Site-specific bidirectional efflux of 2,4-dinitrophenyl-S-glutathione, a substrate of multidrug resistance-associated proteins, in rat intestine and Caco-2 cells

J Pharm Pharmacol. 2007 Apr;59(4):513-20. doi: 10.1211/jpp.59.4.0005.

Abstract

The site-specific function of multidrug-resistance-associated proteins (MRPs), especially MRP2 and MRP3, was examined in rat intestine and human colon adenocarcinoma (Caco-2) cells. The MRP function was evaluated pharmacokinetically by measuring the efflux transport of 2,4-dinitrophenyl-S-glutathione (DNP-SG), an MRP substrate, after application of 1-chloro-2,4-dinitrobenzene (CDNB), a precursor of DNP-SG. The expression of rat and human MRP2 and MRP3 was analysed by Western blotting. The rat jejunum exhibited a higher apical MRP2 and a lower basolateral MRP3 expression than ileum. In accordance with the expression level, DNP-SG efflux to the mucosal surface was significantly greater in jejunum, while serosal efflux was greater in ileum. Site-specific bidirectional efflux of DNP-SG was also observed in in-vivo studies, in which portal and femoral plasma levels and biliary excretion rate of DNP-SG were significantly higher when CDNB was administered to ileum. Caco-2 cells also showed a bidirectional efflux of DNP-SG. Probenecid, an MRP inhibitor, significantly suppressed the mucosal efflux in jejunum and serosal efflux in ileum. In contrast, probenecid significantly suppressed both apical and basolateral efflux of DNP-SG in Caco2 cells, though the inhibition was of small magnitude. In conclusion, the efflux of DNP-SG from enterocytes mediated by MRPs exhibited a significant regional difference in rat intestine, indicating possible variability in intestinal bioavailabilities of MRP substrates, depending on their absorption sites along the intestine.

MeSH terms

  • Animals
  • Bile / metabolism
  • Biological Availability
  • Biological Transport
  • Blotting, Western
  • Caco-2 Cells
  • Dinitrochlorobenzene
  • Glutathione / analogs & derivatives*
  • Glutathione / pharmacokinetics
  • Humans
  • Ileum / metabolism
  • Intestinal Absorption*
  • Intestinal Mucosa / metabolism
  • Jejunum / metabolism
  • Male
  • Membrane Transport Proteins / metabolism*
  • Multidrug Resistance-Associated Protein 2
  • Multidrug Resistance-Associated Proteins / metabolism*
  • Probenecid
  • Rats
  • Rats, Sprague-Dawley
  • Substrate Specificity

Substances

  • ABCC2 protein, human
  • Dinitrochlorobenzene
  • Membrane Transport Proteins
  • Multidrug Resistance-Associated Protein 2
  • Multidrug Resistance-Associated Proteins
  • multidrug resistance-associated protein 3
  • S-(2,4-dinitrophenyl)glutathione
  • Glutathione
  • Probenecid