Human telomerase reverse transcriptase promoter-driven oncolytic adenovirus with E1B-19 kDa and E1B-55 kDa gene deletions

Hum Gene Ther. 2008 Dec;19(12):1383-400. doi: 10.1089/hum.2008.056.

Abstract

We constructed an oncolytic adenovirus, Adeno-hTERT-E1A, with deletions of the viral E1B, E3A, and E3B regions and insertion of a human telomerase reverse transcriptase (hTERT) promoter-driven early viral 1A (E1A) cassette that confers high transcriptional activity in multiple human tumor cell lines. The oncolytic potential of Adeno-hTERT-E1A was characterized in comparison with that of the E1B-55 kDa- and E3B-region-deleted oncolytic adenovirus ONYX-015. Tumor cells infected with Adeno-hTERT-E1A expressed dramatically higher levels of E1A oncoprotein, underwent enhanced lysis, and displayed an earlier and higher apoptotic index than cells infected with ONYX-015. Despite the increase in virus-induced apoptotic death, Adeno-hTERT-E1A replicated and produced functional progeny leading to viral spread, but with reduced efficiency compared with ONYX-015, in particular in A549 cells. Virus-induced E1A expression, host cell apoptosis, viral hexon protein production, and DNA synthesis were markedly reduced in primary human hepatocytes after infection with Adeno-hTERT-E1A as compared with ONYX-015. The strong oncolytic activity of Adeno-hTERT-E1A in tumor cell culture translated into superior antitumor activity in vivo in an MDA-MB-231 solid tumor xenograft model. Adeno-hTERT-E1A thus has strong therapeutic potential and an improved safety profile compared with ONYX-015, which may lead to reduced toxicity in the clinic.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenoviridae / genetics*
  • Adenovirus E1B Proteins / genetics*
  • Base Sequence
  • Cell Line
  • DNA Primers
  • Gene Deletion*
  • Humans
  • Oncolytic Virotherapy*
  • Polymerase Chain Reaction
  • Promoter Regions, Genetic*
  • Telomerase / genetics*

Substances

  • Adenovirus E1B Proteins
  • DNA Primers
  • Telomerase