Generic dealkylation: a tool for increasing the hit-rate of metabolite rationalization, and automatic customization of mass defect filters

Rapid Commun Mass Spectrom. 2009 Apr;23(7):939-48. doi: 10.1002/rcm.3951.

Abstract

The use of exact mass liquid chromatography/mass spectrometry (LC/MS) for drug metabolism studies has increased significantly in recent years. Firstly, exact mass measurements facilitate identification of standard biotransformations through the use of narrow window extracted ion chromatograms, which are typically highly selective relative to signals from matrix or dosing components. Secondly, novel metabolites can be characterized via elemental formula calculations and high-resolution product ion spectra. Furthermore, biological background ions can be removed by the use of mass defect filters (MDFs) which filter out ions based on the decimal component of their m/z value. Here, we describe an approach which we term 'generic dealkylation' that in association with other data interpretation tools adds significant value to the assignment process. Generic dealkylation uses a simple strategy to identify those bonds which have the potential to be cleaved by metabolism. In combination with standard phase 1 and phase 2 biotransformations, this allows creation of a chemically intelligent MDF which balances the need to remove matrix background with the requirement of avoiding filtering true metabolites. Secondly, generic dealkylation increases the hit-rate at which non-trivial (i.e. not covered by simple phase 1 oxidations or direct phase 2 conjugations) metabolites can be directly rationalized. The value of the generic dealkylation approach is illustrated by its application to determination of in vitro metabolic routes for two commercial drugs, nefazodone and indinavir.

Publication types

  • Evaluation Study

MeSH terms

  • Animals
  • Chromatography, High Pressure Liquid
  • Dealkylation
  • Inactivation, Metabolic
  • Metabolomics
  • Microsomes, Liver / metabolism
  • Prescription Drugs / pharmacokinetics*
  • Rats
  • Spectrometry, Mass, Electrospray Ionization / methods*

Substances

  • Prescription Drugs