Disposition and excretion of 2,3,4,7,8-pentachlorodibenzofuran in the rat

Toxicol Appl Pharmacol. 1987 Sep 15;90(2):243-52. doi: 10.1016/0041-008x(87)90332-2.

Abstract

The disposition of 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), a highly toxic environmental contaminant which accumulates in human tissues, was examined in the male Fischer rat after iv and oral exposure. Greater than 70% of an oral dose of 0.1, 0.5, or 1.0 mumol PeCDF/kg body wt was absorbed by the gastrointestinal system. After either oral or iv administration of 0.1 mumol/kg, the dibenzofuran was rapidly removed from the blood and accumulated in the liver and adipose tissue and to a lesser extent in the skin and muscle. Three days after administration, 70% of the iv dose of PeCDF was found in the liver, 7% in the fat, 1% in the skin, and 0.5% in the muscle. Route of exposure had little effect on tissue distribution. TLC analyses indicated that greater than 99% of the [14C]-PeCDF-derived radioactivity which had accumulated in the liver and adipose tissue was unmetabolized PeCDF which was eliminated very slowly (t1/2 = 193 and 69 days, respectively). The whole body half-life calculated from the daily fecal excretion rate was approximately 64 days. Excretion occurred primarily via the feces. No radioactivity was detected in expired air and less than 0.02% was detected in the urine. TLC analysis of fecal extracts indicated greater than 90% of the [14C]PeCDF-derived radioactivity in the feces was polar metabolites of the parent compound. Pretreatment with 500 micrograms PeCDF/kg body wt caused biliary excretion to nearly double. Treatment of bile with beta-glucuronidase or arylsulfatase had little effect on the chromatographic profile. Therefore, PeCDF was readily absorbed from the gastrointestinal tract, concentrated primarily in the liver, and was slowly eliminated from the body as polar metabolites. The long half-life and high body burden of PeCDF suggest that the toxicity of this chemical may be enhanced due to bioaccumulation upon chronic low-level exposure.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Benzofurans / metabolism*
  • Bile / metabolism
  • Half-Life
  • Intestinal Absorption
  • Male
  • Rats
  • Rats, Inbred F344
  • Tissue Distribution

Substances

  • Benzofurans
  • 2,3,4,7,8-pentachlorodibenzofuran