Characterization of 1-hydroxypyrene as a novel marker substrate of 3-methylcholanthrene-inducible phenol UDP-glucuronosyltransferase(s)

Pharmacol Toxicol. 1997 Mar;80(3):152-8. doi: 10.1111/j.1600-0773.1997.tb00389.x.

Abstract

Rats were treated with acetone, pyrazole, phenobarbital, 4,4'-methylenebis-(2-chloroaniline) (MOCA), 3-methylcholanthrene, creosote oil, or a mixture of polychlorinated biphenyls (Aroclor 1254) to study the inducibility and enzyme kinetics of UDP-glucuronosyltransferases towards 1-hydroxypyrene, which is a human metabolite and a urinary biomarker of exposure to pyrene. The rate of 1-hydroxypyrene glucuronidation was analyzed in rat liver microsomes by a fluorometric HPLC assay of the formed glucuronide. The apparent K(m) and Vmax values in untreated controls (K(m) = 0.27 mM; Vmax = 31 nmol/min./mg protein) did not differ markedly from those in rats treated with acetone, pyrazole or phenobarbital, whereas the significantly decreased K(m) and increased Vmax values of the rats treated with the carcinogenic chemicals, MOCA (0.11; 51), creosote (0.06; 137), 3-methylcholanthrene (0.07; 141) or the Aroclor-1254 polychlorinated biphenyl (PCB) mixture (0.08; 226), implicated major changes in the hepatic expression of UDP-glucuronosyltransferases. 1-Hydroxypyrene proved to be a high affinity substrate and a sensitive marker of the polycyclic aromatic hydrocarbon (PAH) metabolizing UDP-glucuronosyltransferase(s). Catalytically, the most efficient isoforms were induced in creosote, 3-methylcholanthrene and PCB-treated rats showing Vmax/K(m) ratios which were 22-27 times greater than in untreated controls. Our findings suggest the existence of a 3-methylcholanthrene type inducible and a functionally efficient low-K(m)/ high-Vmax form(s) of UDP-glucuronosyltransferase(s) that detoxify 1-hydroxypyrene and probably other polycyclic aromatic hydrocarbons as well.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetone / administration & dosage
  • Acetone / toxicity
  • Animals
  • Carcinogens / administration & dosage
  • Carcinogens / toxicity*
  • Chromatography, High Pressure Liquid
  • Creosote / toxicity
  • Enzyme Induction / drug effects
  • Enzyme Inhibitors / toxicity
  • Glucuronates / metabolism
  • Glucuronosyltransferase / biosynthesis*
  • Magnetic Resonance Spectroscopy
  • Male
  • Methylcholanthrene / administration & dosage
  • Methylcholanthrene / toxicity*
  • Methylenebis(chloroaniline) / administration & dosage
  • Methylenebis(chloroaniline) / toxicity
  • Microsomes, Liver / drug effects
  • Microsomes, Liver / enzymology
  • Mutagens / metabolism*
  • Phenobarbital / administration & dosage
  • Phenobarbital / toxicity
  • Polychlorinated Biphenyls / administration & dosage
  • Polychlorinated Biphenyls / toxicity
  • Pyrazoles / administration & dosage
  • Pyrazoles / toxicity
  • Pyrenes / metabolism*
  • Rats
  • Rats, Wistar
  • Substrate Specificity

Substances

  • Carcinogens
  • Enzyme Inhibitors
  • Glucuronates
  • Mutagens
  • Pyrazoles
  • Pyrenes
  • Acetone
  • Methylenebis(chloroaniline)
  • pyrazole
  • Methylcholanthrene
  • Creosote
  • Polychlorinated Biphenyls
  • Glucuronosyltransferase
  • 1-hydroxypyrene
  • Phenobarbital