Effect of viscous fiber (guar) on postprandial motor activity in human small bowel

Dig Dis Sci. 1997 Aug;42(8):1613-7. doi: 10.1023/a:1018888726646.

Abstract

Both caloric value and chemical composition of a meal have been shown to regulate postprandial small bowel motility in dog. In the same species, duration of and contractile activity within the postprandial period also depends on mean viscosity. It is unknown, however, whether meal viscosity and fiber content also regulate small bowel motor activity in man. In human volunteers, we therefore studied the effect of guar gum on small bowel motor response to liquid and solid meals. Twenty-six prolonged ambulatory small bowel manometry studies were performed in 12 volunteers. A total of 620 hr of recording were analyzed visually for phase III of the MMC and a validated computer program calculated the incidence and amplitude of contractions after ingestion of water (300 ml), a pure glucose drink (300 ml/330 kcal) or a solid meal (530 kcal) with and without 5 g of guar gum. Addition of 5 g of guar gum did not significantly delay reappearance of phase III after ingestion of water (59 +/- 11 vs 106 +/- 21 min; P = 0.09). However, guar gum significantly prolonged duration of postprandial motility pattern both after the glucose drink (123 +/- 19 vs 199 +/- 24 min; P < 0.05) and after the solid meal (310 +/- 92 vs 419 +/- 22 min; P = 0.005). Contractile activity during these periods was not affected by guar gum. This was true for mean incidence of contractions after water (1.9 +/- 0.3 vs 1.8 +/- 0.5 min-1), after the glucose drink (1.6 +/- 0.4 vs. 1.7 +/- 0.3 min-1) and after the solid meal (2.4 +/- 0.4 vs 2.6 +/- 0.4 min-1). Likewise, mean amplitude of contractions was not affected by guar gum after water (22.8 +/- 1.4 vs 20.9 +/- 1.9 mm Hg), after the glucose drink (20.5 +/- 1.4 vs 21.3 +/- 1.2), and after the solid meal (20.3 +/- 1.5 vs 21.5 +/- 1.6 mm Hg). Thus a guar gum-induced increase in chyme viscosity markedly prolonged duration of postprandial motor activity in the human small bowel. Contractile activity within the postprandial period, however, was not affected. We suggest that the postprandial motility pattern persisted longer after the more viscous meals, because gastric emptying and intestinal transit were delayed by guar gum. We conclude that it is essential to define meal viscosity and fiber contents when studying postprandial small bowel motility.

Publication types

  • Clinical Trial
  • Controlled Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Dietary Fiber / pharmacology*
  • Galactans / pharmacology*
  • Gastrointestinal Motility*
  • Humans
  • Intestine, Small / physiology*
  • Male
  • Mannans / pharmacology*
  • Myoelectric Complex, Migrating
  • Plant Gums
  • Postprandial Period*
  • Viscosity

Substances

  • Dietary Fiber
  • Galactans
  • Mannans
  • Plant Gums
  • guar gum