Effects of PEGylation and immune complex formation on the pharmacokinetics and biodistribution of recombinant interleukin 10 in mice

Drug Metab Dispos. 2012 Feb;40(2):360-73. doi: 10.1124/dmd.111.042531. Epub 2011 Nov 14.

Abstract

Interleukin 10 (IL-10) is a potent cytokine homodimer with multiple immunoregulatory functions. Here, we have characterized the effects of PEGylation and formation of human IL-10 (hIL-10)/humanized anti-human IL-10 (hαhIL-10) immune complexes in the pharmacokinetics, biodistribution, and biotransformation of IL-10 in mice. To assess the fate of native, PEGylated, and antibody-bound IL-10; we implemented an analytical set of fluorescence emission-linked assays. Plasma size exclusion chromatography analysis indicated that fluoro-labeled native and PEGylated murine IL-10 (PEG-mIL-10) are stable in the circulation. PEGylation of IL-10 resulted in a 21-fold increased exposure, 2.7-fold increase in half-life, and 20-fold reduction in clearance. Kidney is the major organ of disposition for both native and PEGylated mIL-10 with renal uptake directly related to systemic clearance. The fluorescence signal in the kidneys reached tissue/blood ratios up to 150 and 20 for native and PEG-mIL-10, respectively. hIL-10/hαhIL-10 immune complexes are detectable in the circulation without evidence of unbound or degraded hIL-10. The exposure of hIL-10 present in immune complexes versus that of hIL-10 alone increased from 0.53 to 11.28 μg · day/ml, with a half-life of 1.16 days and a 23-fold reduction in clearance. Unlike hIL-10 alone, antibody-bound hIL-10 was targeted mainly to the liver with minimal renal distribution. In addition, we found an 11-fold reduction (from 9.9 to 113 nM) in binding to the neonatal Fc receptor (FcRn) when the hαhIL10 antibody is conjugated to hIL-10. The potential changes in FcRn binding in vivo and increased liver uptake may explain the unique pharmacokinetic properties of hIL-10/hαhIL-10 immune complexes.

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Anti-Inflammatory Agents, Non-Steroidal / antagonists & inhibitors
  • Anti-Inflammatory Agents, Non-Steroidal / chemistry
  • Anti-Inflammatory Agents, Non-Steroidal / metabolism
  • Anti-Inflammatory Agents, Non-Steroidal / pharmacokinetics*
  • Antigen-Antibody Complex / analysis
  • Antigen-Antibody Reactions*
  • Female
  • Half-Life
  • Histocompatibility Antigens Class I / metabolism
  • Humans
  • Injections, Intravenous
  • Injections, Subcutaneous
  • Interleukin-10 / antagonists & inhibitors
  • Interleukin-10 / chemistry*
  • Interleukin-10 / metabolism
  • Interleukin-10 / pharmacokinetics*
  • Kidney / cytology
  • Kidney / immunology
  • Kidney / metabolism
  • Liver / cytology
  • Liver / immunology
  • Liver / metabolism
  • Metabolic Clearance Rate
  • Mice
  • Mice, Inbred Strains
  • Polyethylene Glycols / chemistry*
  • Receptors, Fc / metabolism
  • Recombinant Proteins / antagonists & inhibitors
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / metabolism
  • Recombinant Proteins / pharmacokinetics
  • Tissue Distribution

Substances

  • Anti-Inflammatory Agents, Non-Steroidal
  • Antigen-Antibody Complex
  • Histocompatibility Antigens Class I
  • IL10 protein, human
  • IL10 protein, mouse
  • Receptors, Fc
  • Recombinant Proteins
  • Interleukin-10
  • Polyethylene Glycols
  • Fc receptor, neonatal