Abstract
Both o-bromophenol and p-bromophenol are formed from bromobenzene in rat liver microsomes. It has been established that p-bromophenol is formed via bromobenzene-3,4-oxide, but o-bromophenol could conceivably arise via either the 2,3-epoxide or the 1,2-epoxide or by direct insertion of oxygen. As described in the present article, we have isolated and identified bromobenzene 2,3-dihydrodiol as a microsomal metabolite of bromobenzene. Identification of the dihydrodiol therefore indicates the formation of its obligatory precursor, bromobenzene-2,3-oxide. Moreover, using bromo(2,4,6-2H3)benzene, we have clarified the mechanism of formation of o-bromophenol from bromobenzene. The rate of formation of o-bromophenol from bromobenzene and bromo(2,4,6-2H3)benzene in liver microsomes from 3-methylcholanthrene-treated rats was 0.72 +/- 0.02 and 0.74 +/- 0.06 nmol/mg/min (kH/kD = 0.99), respectively. The lack of a significant isotope effect indicates that the hydroxylation of bromobenzene to o-bromophenol is not by a direct insertion mechanism. Furthermore, the mass spectrum of o-bromophenol isolated from a microsomal incubation with bromo(2,4,6-2H3)benzene indicated that 70% of the product retained all three deuterium atoms. These results are consistent with the view that o-bromophenol is formed from the 2,3-epoxide intermediate but do not preclude formation by the addition of oxygen to the 2-position carbons followed by an NIH shift and rearrangement before an epoxide is formed.
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|