Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

The role of the liver in mediating the acute toxicity of the pesticide methyl parathion in the mouse.

L G Sultatos
Drug Metabolism and Disposition September 1987, 15 (5) 613-617;
L G Sultatos
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Mouse livers perfused in situ with the pesticide methyl parathion (O,O-dimethyl O-P-nitrophenyl phosphorothioate) resulted in the appearance of the toxic metabolite, methyl paraoxon (O,O-dimethyl-O-P-nitrophenyl phosphate), in the effluent perfusate. Mouse whole blood rapidly detoxified methyl paraoxon in vitro, but not at a rate sufficient to prevent transport of at least some of this toxic metabolite from liver to other tissues in vivo. The hepatic disposition and biotransformation of methyl parathion in perfused livers were altered markedly by changes in protein binding of methyl parathion to perfusate, but only slightly by changes in perfusate flow rates that maintained viable livers. Pretreatment of mice with phenobarbital daily for 4 days (80 mg/kg, ip) induced hepatic microsomal activation of methyl parathion to methyl paraoxon in vitro and increased the clearance of methyl parathion by perfused mouse livers. However, in contrast to perfusion of methyl parathion into livers from saline-pretreated mice, perfusion of methyl parathion into livers from phenobarbital-pretreated mice did not lead to the appearance of methyl paraoxon in effluent perfusate. Nevertheless, methyl paraoxon was produced intrahepatically during these perfusions since hepatic cholinesterase activities were depressed compared to livers from phenobarbital-pretreated mice perfused without methyl parathion. Furthermore, phenobarbital pretreatment antagonized the acute toxicity of methyl parathion in vivo in the mouse. These data demonstrate that the net result of the biotransformation of methyl parathion by livers in untreated mice is metabolic activation, whereas the net result by livers of phenobarbital-pretreated mice is detoxification.(ABSTRACT TRUNCATED AT 250 WORDS)

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 15, Issue 5
1 Sep 1987
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The role of the liver in mediating the acute toxicity of the pesticide methyl parathion in the mouse.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

The role of the liver in mediating the acute toxicity of the pesticide methyl parathion in the mouse.

L G Sultatos
Drug Metabolism and Disposition September 1, 1987, 15 (5) 613-617;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

The role of the liver in mediating the acute toxicity of the pesticide methyl parathion in the mouse.

L G Sultatos
Drug Metabolism and Disposition September 1, 1987, 15 (5) 613-617;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics