Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Structural characterization of urinary metabolites of the antiarrhythmic drug encainide in human subjects.

H K Jajoo, R F Mayol, J A LaBudde and I A Blair
Drug Metabolism and Disposition January 1990, 18 (1) 28-35;
H K Jajoo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R F Mayol
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J A LaBudde
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I A Blair
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Metabolism of the antiarrhythmic drug encainide was studied in human subjects after a single 50-mg oral dose. Encainide labeled on the carbonyl carbon with 14C and at the benzylic (2'-1-ethyl) carbon with 13C was administered to four normal healthy male subjects. A large proportion of the radioactive dose (42%) was excreted in the urine in the first 24 hr. The total urinary excretion was 47.0 +/- 4.6% and total fecal excretion was 38.7 +/- 5.7% over 5 days. The conjugated metabolites excreted in the urine were hydrolyzed with beta-glucuronidase/arylsulfatase, and were isolated and purified by HPLC. Structural characterization was carried out by a combination of fast atom bombardment-mass spectrometry, gas chromatography/electron impact mass spectrometry, and 1H-NMR spectroscopy. Structures of the metabolites were confirmed by co-elution on HPLC with authentic standards when available. Six metabolites of encainide were identified from the hydrolyzed urine together with unchanged drug. In addition to already known metabolites O-demethyl-encainide, 3-methoxy-O-demethyl-encainide, and N,O-di-demethyl-encainide, three new metabolites were identified: N-demethyl-3-methoxy-O-demethyl-encainide, 3-hydroxy-encainide, and O-demethyl-encainide-lactam. These metabolites accounted for greater than 90% of the radioactivity excreted in the urine. Four major routes of metabolism were identified: first, O-demethylation of the aromatic methyl ether; second, formation of methylated catechol derivatives; third, N-demethylation of the piperidyl nitrogen; and fourth, oxidation at carbon alpha to the piperidyl nitrogen. A plausible scheme for the metabolism of encainide in human subjects is proposed.

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 18, Issue 1
1 Jan 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Structural characterization of urinary metabolites of the antiarrhythmic drug encainide in human subjects.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Structural characterization of urinary metabolites of the antiarrhythmic drug encainide in human subjects.

H K Jajoo, R F Mayol, J A LaBudde and I A Blair
Drug Metabolism and Disposition January 1, 1990, 18 (1) 28-35;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Structural characterization of urinary metabolites of the antiarrhythmic drug encainide in human subjects.

H K Jajoo, R F Mayol, J A LaBudde and I A Blair
Drug Metabolism and Disposition January 1, 1990, 18 (1) 28-35;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics