Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Ethyl carbamate metabolism: in vivo inhibitors and in vitro enzymatic systems.

T Yamamoto, W M Pierce Jr, H E Hurst, D Chen and W J Waddell
Drug Metabolism and Disposition May 1990, 18 (3) 276-280;
T Yamamoto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W M Pierce Jr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H E Hurst
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W J Waddell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The metabolism of ethyl carbamate and the localization of its metabolites have been shown to be almost completely inhibited by ethanol in the mouse [Waddell, Marlowe, Pierce: Food Chem. Toxicol.25, 527 (1987); Yamamoto, Pierce, Hurst, Chen, Waddell: Drug Metab. Dispos. 16, 355 (1988)]. The enzyme system catalyzing this metabolism which is inhibited by ethanol now has been further investigated in both in vivo and in vitro studies. There is a direct, highly significant relationship between the extent of metabolism of ethyl carbamate and covalent binding of metabolites to liver protein. Paraoxon, carbaryl, CCl4 ethanol, methimazole, 4-methylpyrazole, diethyl maleate, ethyl N-hydroxycarbamate, and t-butyl carbamate inhibit, to different extents, the metabolism of ethyl carbamate in vivo; SKF-525A, CoCl2, Cacyanamide, chloral hydrate, 2-oxo-4-thiazolidine carboxylic acid, allopurinol, and methyl carbamate do not. Porcine liver esterase, yeast aldehyde dehydrogenase and mouse liver catalase catalyzed the metabolism in vitro; dog or bovine catalase, acid phosphatase, alcohol dehydrogenase, or carbonic anhydrase did not under the conditions tested. Paraoxon, 4-methylpyrazole, carbaryl, and NaF significantly inhibited the hydrolytic activity of mouse liver homogenates toward p-nitrophenyl acetate; ethanol or ethyl carbamate did not. However, each of these, except 4-methylpyrazole, inhibited the metabolism of ethyl carbamate by mouse liver homogenate or porcine liver esterase to about the same extent. Ion exchange chromatography of mouse liver cytosol revealed that the fraction with ability to metabolize ethyl carbamate co-chromatographed almost exactly with the ability to hydrolyze p-nitrophenyl acetate. It is proposed that ethyl carbamate is metabolized in the mouse, at least partially, by esterases; however, metabolism by other enzyme systems cannot be excluded.

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 18, Issue 3
1 May 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ethyl carbamate metabolism: in vivo inhibitors and in vitro enzymatic systems.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Ethyl carbamate metabolism: in vivo inhibitors and in vitro enzymatic systems.

T Yamamoto, W M Pierce, H E Hurst, D Chen and W J Waddell
Drug Metabolism and Disposition May 1, 1990, 18 (3) 276-280;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Ethyl carbamate metabolism: in vivo inhibitors and in vitro enzymatic systems.

T Yamamoto, W M Pierce, H E Hurst, D Chen and W J Waddell
Drug Metabolism and Disposition May 1, 1990, 18 (3) 276-280;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics