Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

The role of cytochromes P-450 and flavin-containing monooxygenase in the metabolism of (S)-nicotine by rabbit lung.

D E Williams, M K Shigenaga and N Castagnoli Jr
Drug Metabolism and Disposition July 1990, 18 (4) 418-428;
D E Williams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M K Shigenaga
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Castagnoli Jr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Rabbit lung microsomes metabolize (S)-nicotine primarily to (S)-nicotine delta 1',5'-iminium ion, which is the precursor of (S)-cotinine, the major urinary metabolite of (S)-nicotine in mammals. (S)-Nicotine-N'-oxide and normicotine are also produced as minor metabolites. alpha-Methylbenzylaminobenzotriazole, a mechanism-based suicide inhibitor of rabbit lung cytochromes P-450 2 and 6, inhibited (S)-nicotine oxidation in parallel with inhibition of benzphetamine N-demethylation and ethoxyresorufin O-deethylation. Pretreatment of rabbits with TCDD or Aroclor 1260 had no effect and markedly inhibited (S)-nicotine oxidation, respectively, strongly suggesting that alpha-methylbenzylaminobenzotriazole inhibition was due to inactivation of rabbit lung P-450 2. Reconstitution with cytochromes P-450 2 and 5 demonstrated that only P-450 2 was active toward (S)-nicotine, yielding predominantly the iminium ion, with smaller amounts of nornicotine, (S)-nicotine N'-oxide, and an unknown metabolite also detected. The purified rabbit lung P-450 2-catalyzed oxidation of (S)-nicotine to (S)-nicotine delta 1',5'-iminium ion exhibited a Km of 70 microM and a Vmax of 1.5 min. Covalent binding of (S)-5-3H-nicotine to rabbit lung macromolecules was dependent upon rabbit lung P-450 2-catalyzed formation of the iminium ion. Antibodies raised against P-450 2 inhibited the rabbit lung microsomal metabolism of (S)-nicotine to (S)-nicotine delta 1',5'-iminium ion by almost 95%. Titration of reconstituted P-450 2 with cytochrome b5 produced a concentration-dependent inhibition of nicotine oxidase activity. Increasing the ratio of NADH to NADPH in incubations containing lung microsomes and (S)-nicotine decreased the yield of the iminium ion, confirming the inhibitory effect of cytochrome b5 on the P-450 2-catalyzed alpha-carbon oxidation reaction. NADH alone did not support the lung microsomal metabolism of (S)-nicotine. N'-oxidation of (S]-nicotine is catalyzed by purified pig liver flavin-containing monooxygenase. A number of experiments involving the use of P-450 inhibitors, titration with NADPH-cytochrome P-450 reductase antibodies, and determination of the pH-enzyme activity profile suggested that rabbit lung flavin-containing monooxygenase contributes to a small amount of the N'-oxide produced by rabbit lung microsomes. Further examination with purified flavin-containing monooxygenase isolated from rabbit lung microsomes demonstrated that (S)-nicotine is a poor substrate for this enzyme. The low yield of N'-oxide, relative to other metabolites, in rabbit lung is uncharacteristic for most mammalian tissues and presumably reflects the unusual substrate specificity of rabbit lung flavin-containing monooxygenase.

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 18, Issue 4
1 Jul 1990
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The role of cytochromes P-450 and flavin-containing monooxygenase in the metabolism of (S)-nicotine by rabbit lung.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

The role of cytochromes P-450 and flavin-containing monooxygenase in the metabolism of (S)-nicotine by rabbit lung.

D E Williams, M K Shigenaga and N Castagnoli
Drug Metabolism and Disposition July 1, 1990, 18 (4) 418-428;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

The role of cytochromes P-450 and flavin-containing monooxygenase in the metabolism of (S)-nicotine by rabbit lung.

D E Williams, M K Shigenaga and N Castagnoli
Drug Metabolism and Disposition July 1, 1990, 18 (4) 418-428;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics