Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Xenobiotic metabolizing enzyme activities in rat, mouse, monkey, and human testes.

K W DiBiasio, M H Silva, L R Shull, J W Overstreet, B D Hammock and M G Miller
Drug Metabolism and Disposition January 1991, 19 (1) 227-232;
K W DiBiasio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M H Silva
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L R Shull
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J W Overstreet
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B D Hammock
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M G Miller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The capacity of the testis to metabolize xenobiotics has been proposed to play a role in the susceptibility of different species to testicular toxicity. Since species differences in testicular xenobiotic metabolizing enzyme activities are not well documented, the primary objective of the present study was to compare enzyme activities in subcellular fractions prepared from rat, mouse, monkey, and human testes. In microsomal fractions, enzyme activities measured were pentoxyresorufin O-dealkylase (PROD), ethoxyresorufin O-dealkylase (EROD), and epoxide hydrolase (mEH). In cytosolic preparations, epoxide hydrolase (cEH) and glutathione S-transferase (cGST) activities were measured. PROD activity was not detectable in any of the species studied, while it was readily detected in liver microsomes used as a positive control. Although EROD activity was low, it was measurable in testicular microsomes from rat and mouse, but not monkey or human. No marked species differences in cEH activity were found. In contrast, mEH activity was low in the monkey, intermediate in the rat, and highest in the human and mouse. cGST activity was significantly lower in the two primate species compared with the rat and the mouse. The levels of activity of the xenobiotic metabolizing enzymes studied were generally more than an order of magnitude lower in the testis as compared to the liver. However, in rat and mouse, the levels of mEH and cGST activities in testis were relatively similar to hepatic levels. Overall, these data indicate that species differences in capacity to metabolize xenobiotics may play a role in differential sensitivity to testicular toxicants.

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 19, Issue 1
1 Jan 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Xenobiotic metabolizing enzyme activities in rat, mouse, monkey, and human testes.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Xenobiotic metabolizing enzyme activities in rat, mouse, monkey, and human testes.

K W DiBiasio, M H Silva, L R Shull, J W Overstreet, B D Hammock and M G Miller
Drug Metabolism and Disposition January 1, 1991, 19 (1) 227-232;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Xenobiotic metabolizing enzyme activities in rat, mouse, monkey, and human testes.

K W DiBiasio, M H Silva, L R Shull, J W Overstreet, B D Hammock and M G Miller
Drug Metabolism and Disposition January 1, 1991, 19 (1) 227-232;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics