Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Metabolism of azoxy derivatives of procarbazine by aldehyde dehydrogenase and xanthine oxidase.

D J Tweedie, D Fernandez, M E Spearman, R C Feldhoff and R A Prough
Drug Metabolism and Disposition July 1991, 19 (4) 793-803;
D J Tweedie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Fernandez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M E Spearman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R C Feldhoff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R A Prough
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Procarbazine, a 1,2-disubstituted hydrazine, is employed therapeutically in the treatment of Hodgkin's disease and a limited number of other neoplasias. The isomeric azoxy metabolites of procarbazine have recently been identified as the precursors of species responsible for both the anti-cancer efficacy and toxic effects mediated by this drug. This study demonstrates that cytosolic enzymes are involved in the metabolism of the azoxy metabolites of procarbazine. Two azoxy procarbazine oxidase activities were resolved by diethylaminoethyl (DEAE)-cellulose chromatography. The activity which did not bind to this column was purified to homogeneity and was identified as a phenobarbital-inducible form of cytosolic aldehyde dehydrogenase. This protein fraction was shown to metabolize only the azoxy 2 procarbazine isomer to yield N-isopropy-p-formylbenzamide (ALD) in a reaction which did not require NAD+ as cofactor. The ALD product formed was also a substrate for a subsequent NAD(+)-dependent reduction reaction catalyzed by that purified protein. The azoxy 2 procarbazine isomer and ALD were shown to be potent inhibitors of both the dehydrogenase and esterase activities of aldehyde dehydrogenase. The second azoxy procarbazine oxidase activity which was retained by the DEAE-cellulose column co-eluted with xanthine oxidase activity. Both the xanthine dehydrogenase/oxidase and azoxy procarbazine oxidase activities of this protein fraction were inhibited by allopurinol, a specific inhibitor of xanthine dehydrogenase. Xanthine dehydrogenase/oxidase was partially purified by an alternative procedure and was shown to metabolize both the azoxy 2 procarbazine isomer and ALD, ultimately producing N-isopropylterephthalamic acid. The ability of xanthine oxidase to metabolize azoxy 2 procarbazine and ALD was confirmed using commercial, purified milk xanthine oxidase.

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 19, Issue 4
1 Jul 1991
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metabolism of azoxy derivatives of procarbazine by aldehyde dehydrogenase and xanthine oxidase.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Metabolism of azoxy derivatives of procarbazine by aldehyde dehydrogenase and xanthine oxidase.

D J Tweedie, D Fernandez, M E Spearman, R C Feldhoff and R A Prough
Drug Metabolism and Disposition July 1, 1991, 19 (4) 793-803;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Metabolism of azoxy derivatives of procarbazine by aldehyde dehydrogenase and xanthine oxidase.

D J Tweedie, D Fernandez, M E Spearman, R C Feldhoff and R A Prough
Drug Metabolism and Disposition July 1, 1991, 19 (4) 793-803;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics