Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Evidence for oxidative activation of mitoxantrone in human, pig, and rat.

J Blanz, K Mewes, G Ehninger, B Proksch, D Waidelich, B Greger and K P Zeller
Drug Metabolism and Disposition September 1991, 19 (5) 871-880;
J Blanz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Mewes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Ehninger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Proksch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Waidelich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Greger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K P Zeller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A new metabolite of mitoxantrone in human, rat, and pig urine has been discovered by means of HPLC. The metabolite has been isolated by preparative HPLC from patient urine and is characterized by tandem mass spectrometry and UV-visible spectroscopy as 8,11-dihydroxy-4-(2-hydroxyethyl)-6-[[2-[(2-hydroxyethyl)amino]ethyl] amino]-1,2,3,4,7,12-hexahydronaphtho-[2,3-f]-chinoxaline-7,1 2-dione. Final structural proof has been obtained by independent synthesis. The new metabolite is a product of the enzymatic oxidation of the phenylenediamine substructure of mitoxantrone. An important biological consequence of the oxidative biotransformation is the possibility of covalent binding to intracellular targets via a highly electrophilic intermediate. Thus, alkylation may be an important mode of action of mitoxantrone. Incubation of mitoxantrone with horseradish peroxidase/hydrogen peroxide in the presence of glutathione led to the formation of two glutathione conjugates of mitoxantrone. Their structures have been elucidated by combination of IonSpray (Sciex, Canada) ionization and tandem mass spectrometry. Radioactive mitoxantrone, synthesized from sodium [14C]cyanide, was used to determine interspecies variations between human and rat. The collected rat urine was analyzed by HPLC using a radioactivity monitoring detector and revealed significant differences in the biotransformation of mitoxantrone in rat compared to human. The main metabolites thus far described in human urine are not observed in rat urine.

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 19, Issue 5
1 Sep 1991
  • Table of Contents
  • Index by author
  • Back Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Evidence for oxidative activation of mitoxantrone in human, pig, and rat.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Evidence for oxidative activation of mitoxantrone in human, pig, and rat.

J Blanz, K Mewes, G Ehninger, B Proksch, D Waidelich, B Greger and K P Zeller
Drug Metabolism and Disposition September 1, 1991, 19 (5) 871-880;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Evidence for oxidative activation of mitoxantrone in human, pig, and rat.

J Blanz, K Mewes, G Ehninger, B Proksch, D Waidelich, B Greger and K P Zeller
Drug Metabolism and Disposition September 1, 1991, 19 (5) 871-880;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics