Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat.

M Sattler, F P Guengerich, C H Yun, U Christians and K F Sewing
Drug Metabolism and Disposition September 1992, 20 (5) 753-761;
M Sattler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F P Guengerich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C H Yun
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
U Christians
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K F Sewing
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The hepatic cytochrome P-450 responsible for metabolism of the structurally related macrolides FK506 and rapamycin in humans was identified using in vitro studies. FK506 and rapamycin metabolism was significantly correlated with nifedipine oxidation in human liver microsomes of eight different individuals. Immunoinhibition with anti-P450 3A4 abolished almost all FK506 and rapamycin metabolite formation. Inactivation of P450 3A4 by incubation of human liver microsomes with triacetyl oleandomycin (50 microM) or gestodene (10 microM) inhibited metabolism of FK506 and rapamycin. In liver microsomes from dexamethasone-treated rats FK506 and rapamycin metabolism was increased compared to liver microsomes from uninduced, phenobarbital-, or 3-methylcholanthrene-induced rats. FK506 and rapamycin were metabolized by reconstituted recombinant human liver P450 3A4. It is concluded that in human and rat liver FK506 and rapamycin are metabolized primarily by cytochrome P-450 3A4.

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 20, Issue 5
1 Sep 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat.

M Sattler, F P Guengerich, C H Yun, U Christians and K F Sewing
Drug Metabolism and Disposition September 1, 1992, 20 (5) 753-761;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat.

M Sattler, F P Guengerich, C H Yun, U Christians and K F Sewing
Drug Metabolism and Disposition September 1, 1992, 20 (5) 753-761;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics