Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Cyclosporin A metabolism in human liver, kidney, and intestine slices. Comparison to rat and dog slices and human cell lines.

A E Vickers, V Fischer, S Connors, R L Fisher, J P Baldeck, G Maurer and K Brendel
Drug Metabolism and Disposition November 1992, 20 (6) 802-809;
A E Vickers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V Fischer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Connors
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R L Fisher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J P Baldeck
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Maurer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Brendel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This study assesses the contribution of cyclosporin A (CsA) metabolism at sites of CsA-induced toxicity: kidney and liver, and a site of absorption, the intestine. With organ slice cultures (8 mm phi), it has been possible to demonstrate that the extrahepatic metabolism of CsA is significant. Both human kidney and colonic mucosal tissue metabolize CsA (1 microM, 24 hr) as analyzed by HPLC. The major metabolite M17 was formed in the kidney at an initial rate of 3 pmol/hr/mg slice protein, which was comparable to M17 formation in the liver slices (5 pmol/hr/mg slice protein). The rate of total CsA metabolism by human kidney slices represents about 42% the rate in liver slices. The metabolism of CsA to M17 was the same in the human kidney cell line 293; however, CsA metabolism was not detectable using human kidney microsomes, nor was metabolism clearly evident in either rat or dog kidney slice cultures. The metabolism of CsA by human colonic mucosal slices to at least three metabolites and the metabolism of CsA by the human intestinal cell line FHs74 Int indicates that the intestinal metabolism of CsA contributes to the first-pass effect of the drug. The liver proved to be the major site of CsA biotransformation in terms of the complexity of metabolites produced, whereas the human liver HepG2 cell line proved not to be a suitable model for CsA metabolism. A time course revealed that the first metabolites formed in the liver slice cultures were the monohydroxylated, M1 and M17, and N-demethylated, M21, followed by the secondary metabolites (including M8, M13, and M18).(ABSTRACT TRUNCATED AT 250 WORDS)

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 20, Issue 6
1 Nov 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cyclosporin A metabolism in human liver, kidney, and intestine slices. Comparison to rat and dog slices and human cell lines.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Cyclosporin A metabolism in human liver, kidney, and intestine slices. Comparison to rat and dog slices and human cell lines.

A E Vickers, V Fischer, S Connors, R L Fisher, J P Baldeck, G Maurer and K Brendel
Drug Metabolism and Disposition November 1, 1992, 20 (6) 802-809;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Cyclosporin A metabolism in human liver, kidney, and intestine slices. Comparison to rat and dog slices and human cell lines.

A E Vickers, V Fischer, S Connors, R L Fisher, J P Baldeck, G Maurer and K Brendel
Drug Metabolism and Disposition November 1, 1992, 20 (6) 802-809;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics