Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Metabolic inversion of (R)-ibuprofen. Formation of ibuprofenyl-coenzyme A.

T S Tracy, D P Wirthwein and S D Hall
Drug Metabolism and Disposition January 1993, 21 (1) 114-120;
T S Tracy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D P Wirthwein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S D Hall
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Ibuprofen [(racemic)2-(4-isobutylphenyl)propionic acid] undergoes metabolic inversion via formation, epimerization, and hydrolysis of the coenzyme A (CoA) thioester, ibuprofenyl-CoA. In this study, (R)-ibuprofen was incubated with either rat whole liver homogenate, human whole liver homogenate, rat liver mitochondria, or rat liver microsomes, and the formation of ibuprofenyl-CoA measured. Rat whole liver homogenate (Vmax/KM = 0.022 +/- 0.005 ml/min/mg protein) was approximately 4-fold more efficient at forming ibuprofenyl-CoA than human whole liver homogenate (Vmax/KM, = 0.005 +/- 0.004 ml/min/mg protein). Rat liver microsomes (Vmax/KM = 0.047 +/- 0.019 ml/min/mg protein) were approximately 2-fold more efficient than rat whole liver homogenate at forming ibuprofenyl-CoA, whereas rat liver mitochondria (Vmax/KM = 0.027 +/- 0.017 ml/min/mg protein) did not differ from whole liver homogenate. Palmitic (Ki = 0.005 mM) and octanoic acids (Ki = 0.19 mM) were capable of inhibiting ibuprofenyl-CoA formation, whereas propionic acid had no effect, suggesting the possible involvement of both long- and medium-chain fatty acyl-CoA synthetases. Of the xenobiotics tested, only bezafibrate (Ki = 0.85 mM) and (S)-ibuprofen (Ki = 0.095 mM in rats, 0.32 mM in human tissue) were capable of substantially inhibiting ibuprofenyl-CoA formation. Thus, it appears that the metabolic inversion of ibuprofen involves lipid-metabolizing pathways and may be affected by fatty acids or xenobiotics.

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 21, Issue 1
1 Jan 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metabolic inversion of (R)-ibuprofen. Formation of ibuprofenyl-coenzyme A.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Metabolic inversion of (R)-ibuprofen. Formation of ibuprofenyl-coenzyme A.

T S Tracy, D P Wirthwein and S D Hall
Drug Metabolism and Disposition January 1, 1993, 21 (1) 114-120;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Metabolic inversion of (R)-ibuprofen. Formation of ibuprofenyl-coenzyme A.

T S Tracy, D P Wirthwein and S D Hall
Drug Metabolism and Disposition January 1, 1993, 21 (1) 114-120;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics