Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Human liver microsomal enflurane defluorination catalyzed by cytochrome P-450 2E1.

K E Thummel, E D Kharasch, T Podoll and K Kunze
Drug Metabolism and Disposition March 1993, 21 (2) 350-357;
K E Thummel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E D Kharasch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Podoll
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Kunze
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The volatile anesthetic agent enflurane undergoes oxidative metabolism in human liver, yielding both inorganic and organic fluoride metabolites. Numerous studies conducted in animals indicate that the enzyme cytochrome P-450 2E1 is a major catalyst for the defluorination reaction. However, the P-450 enzyme catalyzing enflurane metabolism in humans has not been identified. Therefore, experiments were conducted to determine whether hepatic P-450 2E1 is a catalyst for the reaction in humans, and whether other constitutive or inducible isoforms might also be involved. Purified human liver P-450 2E1, reconstituted with cytochrome b5 and P-450 reductase, catalyzed enflurane defluorination at a rate of 9.3 nmol F-/nmol P-450/30 min, in contrast to a mean liver microsomal rate of 2.0 nmol F-/nmol P-450/30 min. The microsomal rate of defluorination for individual human livers correlated significantly with the microsomal content of P-450 2E1 protein (r = 0.92), the rate of p-nitrophenol hydroxylation (r = 0.86), and the rate of chlorzoxazone 6-hydroxylation (r = 0.90). In addition, specific anti-P-450 2E1 IgG, at a concentration of 10 mg IgG/nmol P-450 inhibited the microsomal reaction by 80%. Finally, a series of P-450 isoform-specific chemical inhibitors of oxidative metabolism--furafylline (1A2), sulfaphenazole (2C9/10), quinidine (2D6), troleandomycin (3A3/4), and diethyldithiocarbamate (2E1)--were screened for their ability to block human microsomal enflurane defluorination. Only diethyldithiocarbamate, a mechanism-based inhibitor of P-450 2E1, inhibited the reaction; this occurred to a degree comparable to the effect of anti-P-450 2E1 antibody.(ABSTRACT TRUNCATED AT 250 WORDS)

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 21, Issue 2
1 Mar 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Human liver microsomal enflurane defluorination catalyzed by cytochrome P-450 2E1.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Human liver microsomal enflurane defluorination catalyzed by cytochrome P-450 2E1.

K E Thummel, E D Kharasch, T Podoll and K Kunze
Drug Metabolism and Disposition March 1, 1993, 21 (2) 350-357;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Human liver microsomal enflurane defluorination catalyzed by cytochrome P-450 2E1.

K E Thummel, E D Kharasch, T Podoll and K Kunze
Drug Metabolism and Disposition March 1, 1993, 21 (2) 350-357;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics