Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Bioactivation and irreversible binding of the cognition activator tacrine using human and rat liver microsomal preparations. Species difference.

T F Woolf, W F Pool, S M Bjorge, T Chang, O P Goel, C F Purchase 2nd, M C Schroeder, K L Kunze and W F Trager
Drug Metabolism and Disposition September 1993, 21 (5) 874-882;
T F Woolf
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W F Pool
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S M Bjorge
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Chang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
O P Goel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C F Purchase 2nd
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M C Schroeder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K L Kunze
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W F Trager
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Tacrine's [1,2,3,4-tetrahydro-9-acridinamine monohydrochloride monohydrate, (THA)] metabolic fate was examined using human and rat liver microsomal preparations. Following 1-hr incubations with human microsomes, [14C]THA (0.4 microM) was extensively metabolized to 1-hydroxyTHA with trace amounts of 2-, 4-, and 7-hydroxyTHA also produced. Poor recovery of radioactivity in the postreaction incubates suggested association of THA-derived radioactivity with precipitated microsomal protein. After exhaustive extraction, 0.034, 0.145, 0.126, and 0.012 nmol eq bound/mg protein/60 min of THA-derived radioactivity was bound to human liver preparations H109, H111, H116, and H118, respectively. Preparations H109 and H118 were lower in P4501A2 content and catalytic activity as compared with preparations H111 and H116. Incubations of equimolar [14C]1-hydroxyTHA with human liver microsomes also resulted in binding to protein, although to a lesser extent than observed with THA. [14C]THA (0.4 microM) was incubated for 1 hr with rat liver microsomes (1 microM P-450) prepared from noninduced (N), phenobarbital (PB), isoniazid (I), and 3-methylcholanthrene (3-MC)-pretreated animals. In all incubations, 1-hydroxyTHA was the major biotransformation product detected. After exhaustive extraction, 0.048, 0.054, 0.049, and 0.153 nmol eq/mg protein/60 min of THA-derived radioactivity was bound to microsomal protein from N, PB, I, and 3-MC pretreated rats. Increased binding with 3-MC induced rat liver preparations suggests the involvement of the P-450 1A subfamily in THA bioactivation. Glutathione (5 mM) coincubation inhibited the irreversible binding of THA-derived radioactivity in both human and 3-MC-induced rat liver preparations, whereas human epoxide hydrase (100 micrograms/incubate) had a relative minor effect. A mechanism is proposed involving a putative quinone methide(s) intermediate in the bioactivation and irreversible binding of THA. A species difference in THA-derived irreversible binding exists between human and noninduced rat liver microsomes, suggesting that the rat is a poor model for studying the underlying mechanism(s) of THA-induced elevations in liver marker enzymes found in clinical investigations.

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 21, Issue 5
1 Sep 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Bioactivation and irreversible binding of the cognition activator tacrine using human and rat liver microsomal preparations. Species difference.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Bioactivation and irreversible binding of the cognition activator tacrine using human and rat liver microsomal preparations. Species difference.

T F Woolf, W F Pool, S M Bjorge, T Chang, O P Goel, C F Purchase, M C Schroeder, K L Kunze and W F Trager
Drug Metabolism and Disposition September 1, 1993, 21 (5) 874-882;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Bioactivation and irreversible binding of the cognition activator tacrine using human and rat liver microsomal preparations. Species difference.

T F Woolf, W F Pool, S M Bjorge, T Chang, O P Goel, C F Purchase, M C Schroeder, K L Kunze and W F Trager
Drug Metabolism and Disposition September 1, 1993, 21 (5) 874-882;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics