Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Site-dependent intestinal hydrolysis of valproate and morphine glucuronide in the developing rat.

G M Pollack, A P Spencer, T L Horton and K L Brouwer
Drug Metabolism and Disposition January 1994, 22 (1) 120-123;
G M Pollack
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A P Spencer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T L Horton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K L Brouwer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A previous pharmacokinetic study in developing rats suggested that enterohepatic recirculation of valproic acid was absent prior to weaning. One explanation for this observation is that the rate, extent, and/or primary site of glucuronide hydrolysis in the gastrointestinal tract changes during postnatal development. To test this hypothesis, the hydrolysis of two model glucuronide conjugates, valproate glucuronide and morphine-3-beta,D-glucuronide, was examined in vitro in homogenates of small and large intestine obtained from rats at 5-60 days postpartum. Analysis of initial hydrolysis rates indicated that the principal hydrolytic site for both glucuronide conjugates shifted from the upper to lower intestine as the animals developed. The initial hydrolysis rate (nmol/min/g) for valproate glucuronide decreased from 38.1 +/- 10.2 to 8.25 +/- 2.42 in the small intestine, and increased from 14.2 +/- 2.3 to 105 +/- 22 in the large intestine, as rats developed from 5 to 60 days postpartum, respectively. Likewise, the intestinal hydrolysis rate for morphine-3-beta,D-glucuronide decreased from 3.70 +/- 0.46 to 0.646 +/- 0.165 in the small intestine, and increased from 3.50 +/- 0.48 to 115 +/- 30 in the large intestine, as rats developed from 5 to 60 days postpartum, respectively. If hydrolysis occurs immediately after excretion of conjugate into the intestine in neonatal rats, minimal temporal delay between excretion of conjugate and reabsorption of liberated parent may occur, therefore concealing the secondary increase in serum drug concentrations associated with enterohepatic recirculation. In contrast, the time required for conjugates to reach the primary hydrolytic site in adult animals is sufficient for appearance of secondary peaks in the serum drug concentration-time profile.

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 22, Issue 1
1 Jan 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Site-dependent intestinal hydrolysis of valproate and morphine glucuronide in the developing rat.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Site-dependent intestinal hydrolysis of valproate and morphine glucuronide in the developing rat.

G M Pollack, A P Spencer, T L Horton and K L Brouwer
Drug Metabolism and Disposition January 1, 1994, 22 (1) 120-123;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Site-dependent intestinal hydrolysis of valproate and morphine glucuronide in the developing rat.

G M Pollack, A P Spencer, T L Horton and K L Brouwer
Drug Metabolism and Disposition January 1, 1994, 22 (1) 120-123;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics