Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Renal excretion of famotidine and role of adenosine in renal failure induced by bacterial lipopolysaccharide in rats.

T Hasegawa, M Nadai, L Wang, Y Takayama, K Kato, T Nabeshima and N Kato
Drug Metabolism and Disposition January 1994, 22 (1) 8-13;
T Hasegawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Nadai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Takayama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Kato
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Nabeshima
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Kato
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Our previous studies have reported that bacterial lipopolysaccharide (LPS) dramatically changes the ability of the active tubular anion secretory system in rats. The present study has investigated the effects of LPS on the pharmacokinetics and renal handling of famotidine, an organic cation drug excreted primarily by an active tubular secretion mechanism in rats. The role of adenosine in the LPS-induced renal failure was also investigated using theophylline, an adenosine antagonist. Pretreatment with LPS (250 micrograms/kg) significantly decreased the steady-state volume of distribution, systemic clearance, and renal clearance (CLr) of famotidine, but not nonrenal clearance. No significant differences in total urinary recovery of unchanged famotidine were observed between treatments. Pretreatment with LPS significantly decreased the glomerular filtration rate (GFR), estimated as inulin clearance. LPS increased the clearance ratio of famotidine (CLr/GFR), but not the net tubular secretion, indicating that LPS has little or no effect on the active tubular cation secretory system. Theophylline (10 mg/kg) improved LPS-induced decrease in GFR without causing any changes in the pharmacokinetic parameters of famotidine. These findings provide further evidence that LPS produces different effects on the distribution and the active tubular secretory systems of anion and cation drugs, and that adenosine may play an important role in the induction of renal failure by LPS.

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 22, Issue 1
1 Jan 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Renal excretion of famotidine and role of adenosine in renal failure induced by bacterial lipopolysaccharide in rats.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Renal excretion of famotidine and role of adenosine in renal failure induced by bacterial lipopolysaccharide in rats.

T Hasegawa, M Nadai, L Wang, Y Takayama, K Kato, T Nabeshima and N Kato
Drug Metabolism and Disposition January 1, 1994, 22 (1) 8-13;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Renal excretion of famotidine and role of adenosine in renal failure induced by bacterial lipopolysaccharide in rats.

T Hasegawa, M Nadai, L Wang, Y Takayama, K Kato, T Nabeshima and N Kato
Drug Metabolism and Disposition January 1, 1994, 22 (1) 8-13;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics