Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Metabolism of 3-[2-(benzoxazol-2-yl)ethyl]-5-ethyl-6-methylpyridin-2 (1H)-one (L-696,229), an HIV-1 reverse transcriptase inhibitor, by rat liver slices and in humans.

S K Balani, L R Kauffman, B H Arison, T V Olah, M E Goldman, S L Varga, J A O'Brien, H G Ramjit, C S Rooney and J M Hoffman
Drug Metabolism and Disposition March 1994, 22 (2) 200-205;
S K Balani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L R Kauffman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B H Arison
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T V Olah
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M E Goldman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S L Varga
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J A O'Brien
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H G Ramjit
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C S Rooney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J M Hoffman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Healthy subjects were administered single oral doses of 800 mg or 400 mg 3-[2-(benzoxazol-2-yl)ethyl]-5-ethyl-6-methylpyridin-2(1H)-o ne (L-696,229), a nonnucleoside inhibitor of the human immunodeficiency virus-type 1 (HIV-1) reverse transcriptase (RT). Plasma or urine samples were collected over a period of 48 hr. Pooled plasma (0.5-6 hr) and urine (0-24 hr) samples were analyzed by HPLC-UV and HIV-1 RT inhibition assay using poly rC.dG as a template primer. The parent compound and several common metabolites were detected in both samples. The metabolic profiles were also similar to those obtained from a rat liver slice incubation with [3H]L-696,229. The in vitro metabolites were identified by NMR and MS as 5 alpha-hydroxyethyl- (major), 5,6-dihydrodiol-, 6'-hydroxy-, 6-hydroxymethyl-, and 5-vinyl analogs, and a benzoxazole ring hydrolysis product. Most of the significant metabolites in human plasma and urine were found to be identical to the in vitro metabolites, as established by HPLC-UV and MS. Hydrolysis of the plasma and urine with beta-glucuronidase/sulfatase indicated the presence of significant amounts of conjugates of the parent compound and 5 alpha-hydroxyethyl metabolite. Most of the other primary metabolites were also present in conjugated forms, albeit in small quantities. In addition, two secondary metabolites were isolated and identified from the hydrolyzed urine as 5-acetyl-6'-hydroxy- and 5 alpha-hydroxyethyl-6-hydroxymethyl- analogs.(ABSTRACT TRUNCATED AT 250 WORDS)

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 22, Issue 2
1 Mar 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metabolism of 3-[2-(benzoxazol-2-yl)ethyl]-5-ethyl-6-methylpyridin-2 (1H)-one (L-696,229), an HIV-1 reverse transcriptase inhibitor, by rat liver slices and in humans.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Metabolism of 3-[2-(benzoxazol-2-yl)ethyl]-5-ethyl-6-methylpyridin-2 (1H)-one (L-696,229), an HIV-1 reverse transcriptase inhibitor, by rat liver slices and in humans.

S K Balani, L R Kauffman, B H Arison, T V Olah, M E Goldman, S L Varga, J A O'Brien, H G Ramjit, C S Rooney and J M Hoffman
Drug Metabolism and Disposition March 1, 1994, 22 (2) 200-205;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Metabolism of 3-[2-(benzoxazol-2-yl)ethyl]-5-ethyl-6-methylpyridin-2 (1H)-one (L-696,229), an HIV-1 reverse transcriptase inhibitor, by rat liver slices and in humans.

S K Balani, L R Kauffman, B H Arison, T V Olah, M E Goldman, S L Varga, J A O'Brien, H G Ramjit, C S Rooney and J M Hoffman
Drug Metabolism and Disposition March 1, 1994, 22 (2) 200-205;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics