Abstract
N-Glucuronidation is an important pathway in aromatic amine metabolism. This study assessed N-glucuronidation of N-acetylbenzidine by human liver slices and microsomes. With slices, considerable metabolism of [3H]N-acetylbenzidine (0.2 mM) was observed during a 2-hr incubation. N-Acetylbenzidine N'-glucuronide represented significant metabolism in four different human liver samples (6-33% of the total recovered radioactivity following HPLC). Benzidine (11-43%), benzidine N-glucuronide (8-11%), and N,N'-diacetylbenzidine (0-2%) were also formed. The kinetics of N-acetylbenzidine N'-glucuronide formation were investigated using Triton X-100-pretreated microsomes. Data were best described by a two-component Michaelis-Menten model composed of both high-affinity (low KM) and low-affinity (high KM) UDP-glucuronsyltranosferases. The high- and low-affinity KMs were 0.36 +/- 0.02 and 1.07 +/- 0.12 mM, respectively. To help identify the UDP-glucuronosyltransferases metabolizing N-acetylbenzidine, 23 transferase substrates were tested for their ability to inhibit glucuronidation. At 0.25 mM, bilirubin, estriol, and 17-epiestriol were good inhibitors (< 50% of control). Dose-response inhibition studies with estriol and 4-aminobiphenyl demonstrated that each agent reached a plateau as its concentration was increased. IC50 for estriol and 4-aminobiphenyl was 0.15 +/- 0.03 and 0.57 +/- 0.06 mM, respectively. Complimentary inhibition was observed when these agents were combined at maximal inhibitory concentrations. These results suggest that more than one UDP-glucuronosyltransferase metabolizes N-acetylbenzidine. N-Glucuronidation represents a major pathway for N-acetylbenzidine metabolism in humans.
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|