Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Metabolism of the proestrogenic pesticide methoxychlor by hepatic P450 monooxygenases in rats and humans. Dual pathways involving novel ortho ring-hydroxylation by CYP2B.

S S Dehal and D Kupfer
Drug Metabolism and Disposition November 1994, 22 (6) 937-946;
S S Dehal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Kupfer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Previous studies demonstrated that methoxychlor [1,1,1-trichloro-2,2-bis-(4-methoxyphenyl)ethane] is a proestrogen and is toxic to mammalian reproductive processes. Mammalian liver microsomes sequentially demethylate methoxychlor (I), yielding two estrogenic metabolites, mono-OH-M (II) and bis-OH-M (III). Liver microsomes from phenobarbital (PB)-treated rats (PB microsomes) additionally formed a catechol product, tris-OH-M (VII) (Kupfer et al., Chem. Res. Toxicol. 3, 8-16, 1990). This study shows that, in addition to compounds II, III and VII, male and female rat PB microsomes catalyze the formation of a novel ring-hydroxylated methoxychlor metabolite, ring-OH-M (IV). Liver microsomes from male rats treated with pregnenolone-16 alpha-carbonitrile formed the same metabolites as PB microsomes, but the ring-OH-M was formed only in minute amounts, and there was no tris-OH-M. Liver microsomes from methylchlolanthrene-treated and control male rats demethylated methoxychlor, but did not form ring-hydroxylated products. Similarly, human liver microsomes exhibited demethylation but not ring-hydroxylation. Incubation of mono-OH-M (II) with control rat liver microsomes yielded only bis-OH-M (III), whereas incubation of ring-OH-M (IV) resulted in monodemethylated (dihydroxy) compounds V/VI and didemethylated ring-hydroxylated compound, tris-OH-M (VII). Incubation of (IV) with PB microsomes led to compounds V and/or VI and tris-OH-M (VII), whereas incubation of mono-OH-M (II) yielded bis-OH-M (III) and tris-OH-M (VII). The evidence indicates that ring-hydroxylation is catalyzed by CYP2B: a) induction of CYP2B was required for ring-hydroxylation; b) antibodies against CYP2B1/2 strongly inhibited the formation of the ring-hydroxylated products by PB microsomes; c) incubation of methoxychlor with reconstituted CYP2B1 yielded both the hydroxylated (IV and VII) and the demethylated (II and III) metabolites; and d) reconstituted CYP2B1 converted mono-OH-M into bis-OH-M and tris-OH-M, whereas bis-OH-M was converted into tris-OH-M. Human CYP2B6 exhibits ring-hydroxylation, indicating that this reaction is catalyzed by several CYP2B isozymes. In addition, this study demonstrates that the formation of the catechol tris-OH-M involves two metabolic pathways: via O-demethylation followed by ring-hydroxylation and via ring-hydroxylation and subsequent O-demethylation.

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 22, Issue 6
1 Nov 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metabolism of the proestrogenic pesticide methoxychlor by hepatic P450 monooxygenases in rats and humans. Dual pathways involving novel ortho ring-hydroxylation by CYP2B.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Metabolism of the proestrogenic pesticide methoxychlor by hepatic P450 monooxygenases in rats and humans. Dual pathways involving novel ortho ring-hydroxylation by CYP2B.

S S Dehal and D Kupfer
Drug Metabolism and Disposition November 1, 1994, 22 (6) 937-946;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Metabolism of the proestrogenic pesticide methoxychlor by hepatic P450 monooxygenases in rats and humans. Dual pathways involving novel ortho ring-hydroxylation by CYP2B.

S S Dehal and D Kupfer
Drug Metabolism and Disposition November 1, 1994, 22 (6) 937-946;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics