Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Isoflurane-chlorodifluoroethene interaction in human liver microsomes. Role of cytochrome P4502B6 in potentiation of haloethene metabolism.

M T Baker, M J Olson, Y Wang, W C Ronnenberg Jr, J T Johnson and A N Brady
Drug Metabolism and Disposition January 1995, 23 (1) 60-64;
M T Baker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M J Olson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W C Ronnenberg Jr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J T Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A N Brady
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Short-chain saturated halocarbons, including isoflurane and the chlorofluorocarbon substitute HCFC-123, can strongly potentiate the cytochrome P450-dependent oxidation of gaseous haloethenes, such as 2-chloro-1,1-difluoroethene (CDE) and vinyl chloride, in vivo and in vitro. P450 isozyme specificity in this effect is suggested by the fact that the interaction is pronounced in microsomes from rats treated with phenobarbital, but does not occur in microsomes of isoniazid- or beta-naphthoflavone-treated animals. We examined the effect of isoflurane on CDE defluorination in liver microsomes from 10 human organ donors to determine whether saturated halocarbon/haloethene interactions also occur in humans and, if so, to determine the cytochromes P450 involved. Three of the samples exhibited isoflurane-stimulated increases (24, 32, and 41%) in CDE defluorination; isoflurane either inhibited or had no effect on CDE metabolism in the other seven samples. Two samples in which isoflurane potentiated CDE metabolism to the greatest rates had higher coumarin 7-hydroxylase (indicative of CYP2A6), 7-ethoxycoumarin O-deethylase (CYP2B6), and nifedipine oxidase (CYP3A4) activities than the other eight samples. However, all 10 subjects had similar rates of phenacetin O-deethylation (CYP1A2) and chlorzoxazone 6-hydroxylation (CYP2E1). In microsomes from cells transfected with cDNAs coding for individual human P450s, CDE metabolism by CYP2B6 was stimulated (216%) by isoflurane, whereas isoflurane did not stimulate CDE metabolism by human CYP2A6, CYP3A4, CYP2D6, or CYP2E1. Isoflurane highly increased CDE defluorination in purified rat CYP2B1 (470%).(ABSTRACT TRUNCATED AT 250 WORDS)

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 23, Issue 1
1 Jan 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Isoflurane-chlorodifluoroethene interaction in human liver microsomes. Role of cytochrome P4502B6 in potentiation of haloethene metabolism.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Isoflurane-chlorodifluoroethene interaction in human liver microsomes. Role of cytochrome P4502B6 in potentiation of haloethene metabolism.

M T Baker, M J Olson, Y Wang, W C Ronnenberg, J T Johnson and A N Brady
Drug Metabolism and Disposition January 1, 1995, 23 (1) 60-64;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Isoflurane-chlorodifluoroethene interaction in human liver microsomes. Role of cytochrome P4502B6 in potentiation of haloethene metabolism.

M T Baker, M J Olson, Y Wang, W C Ronnenberg, J T Johnson and A N Brady
Drug Metabolism and Disposition January 1, 1995, 23 (1) 60-64;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics