Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Multiple forms of cytochrome P450 are involved in the metabolism of ondansetron in humans.

C M Dixon, P V Colthup, C J Serabjit-Singh, B M Kerr, C C Boehlert, G R Park and M H Tarbit
Drug Metabolism and Disposition November 1995, 23 (11) 1225-1230;
C M Dixon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P V Colthup
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C J Serabjit-Singh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B M Kerr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C C Boehlert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G R Park
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M H Tarbit
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Ondansetron is cleared primarily by metabolism in humans, with hydroxylation of the indole moiety in the 7- and 8-positions being the major identified phase I pathways. In vitro studies using lymphoblastoid cell lines expressing single human cytochrome P450 forms and hepatic microsomes were undertaken to investigate the forms involved in the metabolism of ondansetron in humans. The cell lines that expressed CYP1A1, CYP1A2, and CYP2D6 were shown to be capable of metabolizing [14C]ondansetron. Studies with human hepatic microsomes and the specific inhibitors furafylene, quinidine, and ketoconazole confirmed the role of CYP1A2 and CYP2D6 and also demonstrated the involvement of the CYP3A subfamily. The data in this study collectively indicate that multiple cytochrome P450 forms, including CYP1A1, CYP1A2, CYP2D6, and the CYP3A subfamily, are probably involved in the clearance of ondansetron in humans, with no single form of cytochrome P450 dominating the overall metabolism of ondansetron. The role played by CYP2D6 in the metabolism of [14C]ondansetron by human hepatic microsomes in vitro was shown to be minor. This finding is consistent with the lack of bimodality in the clinical pharmacokinetics of ondansetron. It is therefore concluded that ondansetron is metabolized by multiple forms of cytochrome P450, and this limits the likelihood of a clinically relevant interaction with ondansetron by a modulator of a single form of cytochrome P450.

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 23, Issue 11
1 Nov 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Multiple forms of cytochrome P450 are involved in the metabolism of ondansetron in humans.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Multiple forms of cytochrome P450 are involved in the metabolism of ondansetron in humans.

C M Dixon, P V Colthup, C J Serabjit-Singh, B M Kerr, C C Boehlert, G R Park and M H Tarbit
Drug Metabolism and Disposition November 1, 1995, 23 (11) 1225-1230;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Multiple forms of cytochrome P450 are involved in the metabolism of ondansetron in humans.

C M Dixon, P V Colthup, C J Serabjit-Singh, B M Kerr, C C Boehlert, G R Park and M H Tarbit
Drug Metabolism and Disposition November 1, 1995, 23 (11) 1225-1230;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics