Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Reduction of the prodrug loperamide oxide to its active drug loperamide in the gut of rats, dogs, and humans.

K Lavrijsen, D van Dyck, J van Houdt, J Hendrickx, J Monbaliu, R Woestenborghs, W Meuldermans and J Heykants
Drug Metabolism and Disposition March 1995, 23 (3) 354-362;
K Lavrijsen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D van Dyck
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J van Houdt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Hendrickx
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Monbaliu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Woestenborghs
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W Meuldermans
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Heykants
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Loperamide oxide (LOPOX) is a prodrug of loperamide (LOP). The reduction of LOPOX to LOP was investigated to provide a pharmacokinetic basis for the pharmacodynamics and improved side effect profile of the prodrug. Reduction of LOPOX was studied in vitro in gut contents, gut flora, intestinal cells, and hepatocytes. In vivo pharmacokinetics and metabolism of LOPOX and LOP were compared in the dog. LOPOX could be efficiently reduced in the gut contents of rats, dogs, and humans, with the most extensive reduction found in cecal contents. Reduction was diminished to 13% of the anaerobic LOPOX reductase activity in the presence of oxygen and to 2.5% of the original activity by heat treatment of the contents. In human ileal effluents, LOPOX reductase activity was similar in oxygen and heat sensitivity. In the rat, the cecum contained on average 89.2% of the total activity in the contents of the upper part of the intestine. In the dog, there was a gradual increase in LOPOX reductase activity from the proximal small intestine toward the cecum. In germ-free rats, the cecum contained < 1% of the activity of the small intestine. Isolated intestinal microflora of rat and dog was able to reduce LOPOX to LOP under anaerobic conditions, indicating that the microflora was primarily involved in the reduction. In its absence (i.e. in germ-free rats), reduction could still be conducted by other unknown components of the gut contents. In isolated intestinal cells, the initial rate of drug uptake was approximately 3-10 times faster for LOP than for LOPOX.(ABSTRACT TRUNCATED AT 250 WORDS)

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 23, Issue 3
1 Mar 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Reduction of the prodrug loperamide oxide to its active drug loperamide in the gut of rats, dogs, and humans.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Reduction of the prodrug loperamide oxide to its active drug loperamide in the gut of rats, dogs, and humans.

K Lavrijsen, D van Dyck, J van Houdt, J Hendrickx, J Monbaliu, R Woestenborghs, W Meuldermans and J Heykants
Drug Metabolism and Disposition March 1, 1995, 23 (3) 354-362;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Reduction of the prodrug loperamide oxide to its active drug loperamide in the gut of rats, dogs, and humans.

K Lavrijsen, D van Dyck, J van Houdt, J Hendrickx, J Monbaliu, R Woestenborghs, W Meuldermans and J Heykants
Drug Metabolism and Disposition March 1, 1995, 23 (3) 354-362;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics