Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

N4-hydroxylation of sulfamethoxazole by cytochrome P450 of the cytochrome P4502C subfamily and reduction of sulfamethoxazole hydroxylamine in human and rat hepatic microsomes.

A E Cribb, S P Spielberg and G P Griffin
Drug Metabolism and Disposition March 1995, 23 (3) 406-414;
A E Cribb
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S P Spielberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G P Griffin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The N4-hydroxylation of sulfamethoxazole (SMX) to its hydroxylamine (SMX-HA) metabolite is the first step in the formation of reactive metabolites responsible for mediating hypersensitivity reactions associated with this compound. In rat hepatic microsomes, the NADPH-dependent oxidation of SMX to SMX-HA was increased 3-fold by pretreatment of rats with phenobarbital. Other cytochrome P450 (CYP) inducers were ineffective. The constitutive and induced SMX N-hydroxylation activities were inhibited by tolbutamide, and induction of SMX-HA activity paralleled the induction of progesterone 21-hydroxylase activity, a marker for CYP2C6. SMX N-hydroxylation in phenobarbital-treated rat hepatic microsomes was inhibited 70% by anti-CYP2C6 antisera. Thus, the N4-hydroxylation of SMX by rat hepatic microsomes was mediated by members of the CYP2C subfamily, probably CYP2C6. In a panel of human microsomes, SMX-HA formation correlated with tolbutamide hydroxylase activity (r = 0.75; p = 0.01); CYP2C9 content (r = 0.79; p < 0.01) and was inhibited 70% by 500 microM tolbutamide and 90% by 100 microM sulfaphenazole. Recombinant CYP2C9 catalyzed the N-hydroxylation of SMX. SMX-HA formation in human hepatic microsomes was therefore mediated predominantly by CYP2C9. CYP-mediated reduction of SMX-HA to SMX was markedly induced in dexamethasone and phenobarbital-treated rat hepatic microsomes, and was attributed to CYP3A and CYP2B forms. In uninduced rat and human hepatic microsomes, SMX-HA reduction was mediated predominantly by an NADH-dependent microsomal hydroxylamine reductase under aerobic conditions. Under anaerobic conditions, troleandomycin at > or = 1 microM inhibited the reduction of SMX-HA in human hepatic microsomes by 45%, whereas sulfaphenazole had no effect.(ABSTRACT TRUNCATED AT 250 WORDS)

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 23, Issue 3
1 Mar 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
N4-hydroxylation of sulfamethoxazole by cytochrome P450 of the cytochrome P4502C subfamily and reduction of sulfamethoxazole hydroxylamine in human and rat hepatic microsomes.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

N4-hydroxylation of sulfamethoxazole by cytochrome P450 of the cytochrome P4502C subfamily and reduction of sulfamethoxazole hydroxylamine in human and rat hepatic microsomes.

A E Cribb, S P Spielberg and G P Griffin
Drug Metabolism and Disposition March 1, 1995, 23 (3) 406-414;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

N4-hydroxylation of sulfamethoxazole by cytochrome P450 of the cytochrome P4502C subfamily and reduction of sulfamethoxazole hydroxylamine in human and rat hepatic microsomes.

A E Cribb, S P Spielberg and G P Griffin
Drug Metabolism and Disposition March 1, 1995, 23 (3) 406-414;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics