Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Fluoroquinolone antibiotics inhibit cytochrome P450-mediated microsomal drug metabolism in rat and human.

R A McLellan, R K Drobitch, M Monshouwer and K W Renton
Drug Metabolism and Disposition October 1996, 24 (10) 1134-1138;
R A McLellan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R K Drobitch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Monshouwer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K W Renton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The fluoroquinolone antibacterial agents have gained widespread use in the treatment of a broad range of bacterial infections. We recently described a possible interaction concerning the concomitant use of cyclosporine A and norfloxacin in pediatric renal transplant patients. We examined the effect of two common fluoroquinolone antibiotics on cytochrome P450-mediated drug biotransformations in human and rat liver microsomes. Rats were pretreated with inducers, which increased the levels of the P450 isozymes CYP3A2, CYP1A, CYP2E1, and CYP4A1. Ciprofloxacin and norfloxacin significantly depressed the N-demethylation of erythromycin by CYP3A4 in human microsomes and by CYP3A2 in rat microsomes. The inhibition was determined to be competitive in nature in rat microsomes, with ciprofloxacin and norfloxacin both exhibiting similar Ki values of 2.0 and 2.3 mM, respectively. Ciprofloxacin and norfloxacin also inhibited ethoxyresorufin-O-dealkylase (CYP1A). In contrast, ciprofloxacin and norfloxacin did not inhibit the metabolism of substrates that are specific for the P450 isozymes CYP2E1 and CYP4A1. Rats treated chronically with norfloxacin revealed no alterations in hepatic CYP3A2 protein levels or activity. These studies in hepatic microsomes demonstrate that fluoroquinolones can decrease CYP3A- and CYP1A-mediated biotransformation by competitive inhibition and that they have the potential to cause drug interactions with agents metabolized by these enzymes.

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 24, Issue 10
1 Oct 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Fluoroquinolone antibiotics inhibit cytochrome P450-mediated microsomal drug metabolism in rat and human.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Fluoroquinolone antibiotics inhibit cytochrome P450-mediated microsomal drug metabolism in rat and human.

R A McLellan, R K Drobitch, M Monshouwer and K W Renton
Drug Metabolism and Disposition October 1, 1996, 24 (10) 1134-1138;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Fluoroquinolone antibiotics inhibit cytochrome P450-mediated microsomal drug metabolism in rat and human.

R A McLellan, R K Drobitch, M Monshouwer and K W Renton
Drug Metabolism and Disposition October 1, 1996, 24 (10) 1134-1138;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics