Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Role of cytochrome P450 in oxazaphosphorine metabolism. Deactivation via N-dechloroethylation and activation via 4-hydroxylation catalyzed by distinct subsets of rat liver cytochromes P450.

L Yu and D J Waxman
Drug Metabolism and Disposition November 1996, 24 (11) 1254-1262;
L Yu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D J Waxman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The roles of individual liver cytochrome P450 (P450) enzymes in N-dechloroethylation leading to deactivation and neurotoxification of the isomeric alkylating agent prodrugs ifosfamide (IF) and cyclophosphamide (CPA) were investigated using an in vitro rat liver model. Rats were pretreated with a panel of drugs, including phenobarbital (a strong inducer of liver P450 2B1/2B2) and dexamethasone (a strong inducer of P450 3A enzymes), to examine the effects of these P450-inducing agents on IF and CPA N-dechloroethylation catalyzed by rat hepatic microsomes. The P450 3A-specific inhibitor troleandomycin and inhibitory monoclonal antibodies reactive with P450 2B and 2C enzymes were used to identify the individual P450 subfamilies involved in microsomal N-dechloroethylation of IF and CPA. It was found that dexamethasone pretreatment preferentially elevated microsomal CPA N-dechloroethylation activity (12-fold increase) and that P450 3A enzymes catalyzed up to > 95% of this reaction in both uninduced and drug-induced liver. In contrast, IF N-dechloroethylation activity was stimulated (approximately 8-fold increase) in liver microsomes by phenobarbital pretreatment, and P450 2B1/2B2 were responsible for the majority of this activity. In addition, P450 2C11 catalyzed approximately 50% of IF N-dechloroethylation in uninduced male rat liver microsomes. inducers of P450 1A and 4A enzymes had no effect on N-dechloroethylation of IF or CPA. These P450 enzyme patterns for the N-dechloroethylation reaction are distinct from those previously determined for IF and CPA activation via 4-hydroxylation. In accord with this observation, the balance between oxazaphosphorine activation (4-hydroxylation pathway) and deactivation/neurotoxication (N-dechloroethylation pathway) could be modulated by P450 form-selective inducers and inhibitors. Thus, dexamethasone pretreatment substantially decreased the extent of IF N-dechloroethylation, from 47% to 24% of total metabolism, whereas it increased CPA N-dechloroethylation from 29% to 84% of total metabolism. Moreover, troleandomycin selectively inhibited CPA N-dechloroethylation, thereby increasing net metabolism of the drug via the therapeutically productive 4-hydroxylation pathway. Oxazaphosphorine activation and deactivation/neurotoxication are thus catalyzed by distinct subsets of liver P450 enzymes, in a manner that may allow for improvements in therapeutic indices for this class of drugs by using P450 form-selective modulators.

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 24, Issue 11
1 Nov 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of cytochrome P450 in oxazaphosphorine metabolism. Deactivation via N-dechloroethylation and activation via 4-hydroxylation catalyzed by distinct subsets of rat liver cytochromes P450.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Role of cytochrome P450 in oxazaphosphorine metabolism. Deactivation via N-dechloroethylation and activation via 4-hydroxylation catalyzed by distinct subsets of rat liver cytochromes P450.

L Yu and D J Waxman
Drug Metabolism and Disposition November 1, 1996, 24 (11) 1254-1262;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Role of cytochrome P450 in oxazaphosphorine metabolism. Deactivation via N-dechloroethylation and activation via 4-hydroxylation catalyzed by distinct subsets of rat liver cytochromes P450.

L Yu and D J Waxman
Drug Metabolism and Disposition November 1, 1996, 24 (11) 1254-1262;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics