Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Sex-dependent pharmacokinetics of indinavir: in vivo and in vitro evidence.

J H Lin, M Chiba, I W Chen, J A Nishime and K J Vastag
Drug Metabolism and Disposition December 1996, 24 (12) 1298-1306;
J H Lin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Chiba
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I W Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J A Nishime
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K J Vastag
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Indinavir, a potent and specific inhibitor of human immunodeficiency virus protease, is used for the treatment of AIDS. This study was designed to investigate the sex-related differences in kinetics and metabolism of indinavir in rats, dogs, and monkeys to support the toxicity studies. When given intravenously, indinavir was cleared rapidly in a polyphasic manner in all species. Indinavir exhibited significant differences in elimination kinetics among species. The rat had the highest plasma clearance (CLp; 41-89 ml/min/kg), and the dog had the lowest CLp (15-26 ml/min/kg), with the monkey exhibiting an intermediate value (36-39 ml/min/kg). Furthermore, marked sex-related differences in CLp were observed in rats and dogs, but not in monkeys. The CLp was 89 ml/min/kg for male rats and 41 ml/min/kg for female rats. In contrast to rats, female dogs cleared indinavir more rapidly than male dogs; the CLp was 26 ml/min/kg for female dogs and 15 ml/min/kg for male dogs. Consistent with the in vivo observations, hepatic microsomes from male rats had a substantially higher metabolizing activity toward indinavir than that from females, whereas liver microsomes from female dogs catalyzed the drug at a higher rate than that from male dogs. Qualitatively, in vitro metabolic profiles of indinavir were similar among species and between male and female animals. Studies with an anti-rat cytochrome P450 (CYP) 3A1 antibody pointed to the probable involvement of isoforms in the CYP3A subfamily in the oxidative metabolism of indinavir in both males and females of all species. The functional activity of CYP3A measured by the formation of testosterone 6beta-hydroxylation and immunoblot analysis of the level of CYP3A proteins strongly suggested that gender differences in the levels of CYP3A isoforms may contribute to the observed sex-related differences in indinavir metabolism in rats and dogs.

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 24, Issue 12
1 Dec 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Sex-dependent pharmacokinetics of indinavir: in vivo and in vitro evidence.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Sex-dependent pharmacokinetics of indinavir: in vivo and in vitro evidence.

J H Lin, M Chiba, I W Chen, J A Nishime and K J Vastag
Drug Metabolism and Disposition December 1, 1996, 24 (12) 1298-1306;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Sex-dependent pharmacokinetics of indinavir: in vivo and in vitro evidence.

J H Lin, M Chiba, I W Chen, J A Nishime and K J Vastag
Drug Metabolism and Disposition December 1, 1996, 24 (12) 1298-1306;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics