Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Characterization of the NADPH-dependent covalent binding of [14C]halothane to human liver microsomes: a role for cytochrome P4502E1 at low substrate concentrations.

A Madan and A Parkinson
Drug Metabolism and Disposition December 1996, 24 (12) 1307-1313;
A Madan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Parkinson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Activation of halothane to trifluoroacetyl halide, followed by covalent binding to proteins (neoantigen formation) has been proposed to be the mechanism by which halothane causes immune hepatitis. The aim of this study was to identify the cytochrome P450 (CYP) enzyme primarily responsible for the NADPH-dependent covalent binding of [14C]halothane to human liver microsomes. Human liver microsomes were incubated in the absence and presence of NADPH with various concentrations of halothane (from 4.6 to 3,300 microM) to examine the effects of substrate concentration on the nonspecific and specific (NADPH-dependent) binding of [14C]halothane to microsomal protein. As a function of substrate concentration, the specific binding of [14C]halothane to human liver microsomes was biphasic, suggesting that the activation of halothane is catalyzed by a high-affinity enzyme(s) at low substrate concentrations (<150 microM) and by a low-affinity enzyme(s) at high substrate concentrations (>150 microM). For the high-affinity enzyme, the apparent KM for the covalent binding of [14C]halothane was approximately 10 microM, and Vmax was approximately 32 pmol equivalents of halothane bound/mg protein/min under conditions where covalent binding was directly proportional to incubation time and protein concentration. Ten individual samples of human liver microsomes were incubated with a low concentration of halothane (35 microM) to determine the sample-to-sample variation in the specific binding of [14C]halothane to microsomal protein. Covalent binding ranged from 10 to 40 pmol equivalents of halothane bound/mg protein/min and was highly correlated (r2 = 0.93) with the sample-to-sample variation in chlorzoxazone 6-hydroxylase activity, which reflects the levels of CYP2E1. These results suggest that CYP2E1 is the high-affinity enzyme in human liver microsomes responsible for activating halothane to a reactive metabolite. This is supported by the observation that 4-methylpyrazole, a CYP2E1 inhibitor, inhibited the NADPH-dependent binding of [14C]halothane to microsomal protein. The sample-to-sample variation in the covalent binding of [14C]halothane at high substrate concentrations did not correlate with any known CYP enzyme activity. This suggests that several enzymes catalyze the oxidation of halothane at higher substrate concentrations. In conclusion, at pharmacologically relevant concentrations, the covalent binding of halothane to human liver microsomes is primarily catalyzed by CYP2E1.

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 24, Issue 12
1 Dec 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of the NADPH-dependent covalent binding of [14C]halothane to human liver microsomes: a role for cytochrome P4502E1 at low substrate concentrations.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Characterization of the NADPH-dependent covalent binding of [14C]halothane to human liver microsomes: a role for cytochrome P4502E1 at low substrate concentrations.

A Madan and A Parkinson
Drug Metabolism and Disposition December 1, 1996, 24 (12) 1307-1313;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Characterization of the NADPH-dependent covalent binding of [14C]halothane to human liver microsomes: a role for cytochrome P4502E1 at low substrate concentrations.

A Madan and A Parkinson
Drug Metabolism and Disposition December 1, 1996, 24 (12) 1307-1313;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics