Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Putative active site template model for cytochrome P4502C9 (tolbutamide hydroxylase).

B C Jones, G Hawksworth, V A Horne, A Newlands, J Morsman, M S Tute and D A Smith
Drug Metabolism and Disposition February 1996, 24 (2) 260-266;
B C Jones
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Hawksworth
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V A Horne
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Newlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Morsman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M S Tute
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D A Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Binding of substrates to the active site of cytochrome P450 enzymes largely relies on hydrophobic interactions. However, other binding interactions can take place giving the enzyme high regioselectivity and even stereoselectivity. For instance, within the major human cytochrome P450s involved in drug metabolism, cytochrome P4502D6 (CYP2D6) relies on an ion-pair interaction as a major binding factor. There are now a number of substrates reported that have routes of metabolism ascribed specifically to cytochrome P4502C9 (CYP2C9), the isoform mainly responsible for tolbutamide hydroxylation. Although chemically diverse, these substrates have the capability to be hydrogen bond donors (or acceptors). The substrate specificity has been rationalized in terms of a hydrogen bond donor/acceptor model and, by use of molecular modeling, an active site template model for CYP2C9 has been generated. The substrates modeled were phenytoin, warfarin, ibuprofen, naproxen, diclofenac, delta 1-tetrahydrocannabinol, 58C80, and tolbutamide. In addition to the substrates, the potent, selective inhibitor sulfaphenazole was also included in the modeling. An initial hydrogen bond donor site (N2) was identified on phenytoin, the most rigid of the substrates. Corresponding hydrogen bond donation sites were then identified on all of the molecules studied. Using molecular modeling, the site of metabolism and the hydrogen bond donation sites of the molecules were then overlaid on phenytoin to produce the putative active site model. The resultant model is described by a, the distance between the site of metabolism (Y), and the hydrogen bond donor heteroatom (X) and C, the angle between this and the hydrogen bond. The mean dimensions (+/- SD) for the nine substrates and one inhibitor (a = 6.7 +/- 1.0 A, C = 133 +/- 21 degrees) illustrate the degree of overlap achieved.

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 24, Issue 2
1 Feb 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Putative active site template model for cytochrome P4502C9 (tolbutamide hydroxylase).
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Putative active site template model for cytochrome P4502C9 (tolbutamide hydroxylase).

B C Jones, G Hawksworth, V A Horne, A Newlands, J Morsman, M S Tute and D A Smith
Drug Metabolism and Disposition February 1, 1996, 24 (2) 260-266;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Putative active site template model for cytochrome P4502C9 (tolbutamide hydroxylase).

B C Jones, G Hawksworth, V A Horne, A Newlands, J Morsman, M S Tute and D A Smith
Drug Metabolism and Disposition February 1, 1996, 24 (2) 260-266;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics