Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

CYP3A-like cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in Caco-2 cells.

L S Gan, M A Moseley, B Khosla, P F Augustijns, T P Bradshaw, R W Hendren and D R Thakker
Drug Metabolism and Disposition March 1996, 24 (3) 344-349;
L S Gan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M A Moseley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Khosla
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P F Augustijns
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T P Bradshaw
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R W Hendren
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D R Thakker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Transport of cyclosporin A (CsA) across Caco-2 cells is modulated by its directional efflux, mediated by a p-glycoprotein-like pump (Augustijns et al., Biochem. Biophys. Res. Comm. 197:360-365, 1994). In addition to this unidirectional flux, oxidative metabolism of CsA by cytochrome P450 is likely to influence the absorption of this cyclic peptide across intestinal mucosa. Thus, metabolism of CsA in the in vitro Caco-2 cell culture system was investigated. Formation of several metabolites was observed during the course of CsA transport across Caco-2 cell monolayers. Results from LC/MS/MS experiments revealed that the major metabolite was 1eta-hydroxy CsA (M-17), one of the three major metabolites produced by CYP3A4 present in both the liver and small intestine in humans. Preincubation of Caco-2 cell monolayers with troleandomycin, a specific inhibitor for the microsomal CYP3A protein, reduced the formation of the metabolite M-17, suggesting that an enzyme that functionally resembles CYP3A is responsible for the formation of this metabolite. However, formation of only the M-17 metabolite suggests that the isozyme present in the Caco-2 cells is distinct from CYP3A4, which also catalyzes the formation of significant quantities of the metabolites 9gamma-hydroxy cyclosporin A (M-1) and 4N-desmethyl cyclosporin A (M-21) from CsA. Interestingly, the amount of M-17 accumulating on the apical (AP) side was much greater than that on the basolateral (BL) side during the AP --> BL transport of CsA across Caco-2 cell monolayers. This is consistent with p-glycoprotein pump-mediated efflux of the metabolite to the apical side. Furthermore, formation of the M-17 metabolite on the AP side of cell monolayers during the AP --> BL transport of CsA was much greater than that during the BL --> AP transport. This result suggests that the p-glycoprotein efflux pump causes an increase in the metabolism of CsA during the course of its AP --> BL transport by effectively slowing down the transport of CsA molecules across Caco-2 cells. Thus, Caco-2 cells serve as an excellent model to dissect the relative roles played by p-glycoprotein-mediated efflux and CYP3A-catalyzed oxidation in modulating the overall absorption of CsA and other such compounds.

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 24, Issue 3
1 Mar 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
CYP3A-like cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in Caco-2 cells.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

CYP3A-like cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in Caco-2 cells.

L S Gan, M A Moseley, B Khosla, P F Augustijns, T P Bradshaw, R W Hendren and D R Thakker
Drug Metabolism and Disposition March 1, 1996, 24 (3) 344-349;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

CYP3A-like cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in Caco-2 cells.

L S Gan, M A Moseley, B Khosla, P F Augustijns, T P Bradshaw, R W Hendren and D R Thakker
Drug Metabolism and Disposition March 1, 1996, 24 (3) 344-349;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics