Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Warfarin-fluconazole. II. A metabolically based drug interaction: in vivo studies.

D J Black, K L Kunze, L C Wienkers, B E Gidal, T L Seaton, N D McDonnell, J S Evans, J E Bauwens and W F Trager
Drug Metabolism and Disposition April 1996, 24 (4) 422-428;
D J Black
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K L Kunze
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L C Wienkers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B E Gidal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T L Seaton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N D McDonnell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J S Evans
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J E Bauwens
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W F Trager
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Consistent with expectations based on human in vitro microsomal experiments, administration of fluconazole (400 mg/day) for 6 days to six human volunteers significantly reduced the cytochrome P450 (P450)-dependent metabolic clearance of the warfarin enantiomers. In particular, P4502C9 catalyzed 6- and 7-hydroxylation of (S)-warfarin, the pathway primarily responsible for termination of warfarin's anticoagulant effect, was inhibited by approximately 70%. The change in (S)-warfarin pharmacokinetics caused by fluconazole dramatically increased the magnitude and duration of warfarin's hypoprothrombinemic effect. These observations indicate that co-administration of fluconazole and warfarin will result in a clinically significant metabolically based interaction The major P450-dependent, in vivo pathways of (R)-warfarin clearance were also strongly inhibited by fluconazole. 10-Hydroxylation, a metabolic pathway catalyzed exclusively by P4503A4, was inhibited by 45% whereas 6-, 7-, and 8-hydroxylations were inhibited by 61, 73, and 88%, respectively. The potent inhibition of the phenolic metabolites suggests that enzymes other than P4501A2 (weakly inhibited by fluconazole in vitro) are primarily responsible for the formation of these metabolites in vivo as predicted from in vitro kinetic studies. These data suggest that fluconazole can be expected to interact with any drug whose clearance is dominated by P450s 2C9, 3A4, and other as yet undefined isoforms. Overall, the results strongly support the hypothesis that metabolically based in vivo drug interactions may be predicted from human in vitro microsomal data.

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 24, Issue 4
1 Apr 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Warfarin-fluconazole. II. A metabolically based drug interaction: in vivo studies.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Warfarin-fluconazole. II. A metabolically based drug interaction: in vivo studies.

D J Black, K L Kunze, L C Wienkers, B E Gidal, T L Seaton, N D McDonnell, J S Evans, J E Bauwens and W F Trager
Drug Metabolism and Disposition April 1, 1996, 24 (4) 422-428;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Warfarin-fluconazole. II. A metabolically based drug interaction: in vivo studies.

D J Black, K L Kunze, L C Wienkers, B E Gidal, T L Seaton, N D McDonnell, J S Evans, J E Bauwens and W F Trager
Drug Metabolism and Disposition April 1, 1996, 24 (4) 422-428;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics