Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Reactivity of mefenamic acid 1-o-acyl glucuronide with proteins in vitro and ex vivo.

K A McGurk, R P Remmel, V P Hosagrahara, D Tosh and B Burchell
Drug Metabolism and Disposition August 1996, 24 (8) 842-849;
K A McGurk
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R P Remmel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V P Hosagrahara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Tosh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Burchell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Mefenamic acid is a nonsteroidal anti-inflammatory drug commonly used in analgesia. The use of this drug has been implicated in several cases of nephrotoxicity including acute renal failure and tubulointerstitial nephritis. One theory of drug-induced tubulointerstitial nephritis is that the drug or a derivative of the drug becomes irreversibly bound to certain sites in renal tissue and an immune response is directed against the hapten-host conjugate. Previous studies have shown that in humans the nonsteroidal anti-inflammatory drug mefenamic acid is metabolized by both phase I enzymes and the phase II enzyme family UDP-glucuronosyltransferase. Indeed, three glucuronides were identified and isolated from human urine by semipreparative HPLC after oral administration of mefenamic acid. This study focuses on mefenamic acid glucuronide and further characterizes this acyl glucuronide in terms of stability and its ability to bind irreversibly to proteins. Stability studies of mefenamic acid glucuronide in aqueous buffer highlighted the relative stability of this acyl glucuronide at physiological pH. The half-life at 37 degrees C, pH 7.4, was 16.5 +/- 3.1 hr, which is considerably longer than those reported for many acyl glucuronides. The degradation of mefenamic acid glucuronide was accelerated under alkaline conditions, decreasing the half-life to 5 +/- 1.6 hr at pH 8.0. Mefenamic acid glucuronide, although extremely stable in buffer at physiological pH, was found to bind irreversibly to human serum albumin in vitro. Irreversible binding to cellular proteins in culture was also evident with the addition of mefenamic acid to the heterologous Chinese hamster lung fibroblast cell line V79 expressing the human UDP-glucuronosyltransferase isoenzyme UGT1*02. This binding was directly related to glucuronide formation, because irreversible binding was not evident in the untransfected cell line V79.

PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 24, Issue 8
1 Aug 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Reactivity of mefenamic acid 1-o-acyl glucuronide with proteins in vitro and ex vivo.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Reactivity of mefenamic acid 1-o-acyl glucuronide with proteins in vitro and ex vivo.

K A McGurk, R P Remmel, V P Hosagrahara, D Tosh and B Burchell
Drug Metabolism and Disposition August 1, 1996, 24 (8) 842-849;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Reactivity of mefenamic acid 1-o-acyl glucuronide with proteins in vitro and ex vivo.

K A McGurk, R P Remmel, V P Hosagrahara, D Tosh and B Burchell
Drug Metabolism and Disposition August 1, 1996, 24 (8) 842-849;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics