Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Abstract

Ropivacaine, a new amide-type local anesthetic agent, is metabolized by cytochromes P450 1A and 3A in human liver microsomes.

G Ekström and U B Gunnarsson
Drug Metabolism and Disposition September 1996, 24 (9) 955-961;
G Ekström
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
U B Gunnarsson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Ropivacaine is a new amide-type local anesthetic agent. Unlike bupivacaine and mepivacaine, two structurally similar local anesthetic compounds, ropivacaine is exclusively the S-(-)-enantiomer. Ropivacaine is predominantly eliminated by extensive metabolism in the liver, with only 1% of the dose being excreted unchanged in the urine of humans. Four of the metabolites formed in human liver microsomes were identified as 3-OH-ropivacaine, 4-OH-ropivacaine, 2-OH-methyl-ropivacaine, and 2',6'-pipecoloxylidide (PPX). The enzymes involved in the human metabolism of ropivacaine have not been identified. To ascertain which forms of cytochrome P450 are involved, ropivacaine was incubated with human microsomes from 10 different livers having different cytochrome P450 activities. A strong correlation was found between the formation of 3-OH-ropivacaine and CYP1A (r = 0.87-0.89) and between the formation of 4-OH-ropivacaine, 2-OH-ropivacaine, and PPX and CYP3A (r = 0.97-1). Incubation of ropivacaine and human liver microsomes in the presence of alpha-naphthoflavone or furafylline, inhibitors of CYP1A, decreased the formation of 3-OH-ropivacaine by about 85%, without affecting the formation of the other metabolites. The formation of 4-OH-ropivacaine, 2-OH-methyl-ropivacaine, and PPX was markedly inhibited in the presence of troleandomycin, an inhibitor of CYP3A. Microsomes from cells expressing CYP1A2 formed 3-OH-ropivacaine, whereas 4-OH-ropivacaine, 2-OH-methyl-ropivacaine, and PPX were formed in microsomes from cells expressing CYP3A4. Inhibitors of CYP2C (sulfaphenazole), CYP2D6 (quinidine), and 2E1 (diethyldithiocarbamate) did not inhibit the formation of any metabolite from ropivacaine. In conclusion, CYP1A catalyzes the formation of 3-OH-ropivacaine, the main metabolite formed in vivo, whereas the formation of 4-OH-ropivacaine, 2-OH-methyl-ropivacaine, and PPX was catalyzed by CYP3A.

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 24, Issue 9
1 Sep 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ropivacaine, a new amide-type local anesthetic agent, is metabolized by cytochromes P450 1A and 3A in human liver microsomes.
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Ropivacaine, a new amide-type local anesthetic agent, is metabolized by cytochromes P450 1A and 3A in human liver microsomes.

G Ekström and U B Gunnarsson
Drug Metabolism and Disposition September 1, 1996, 24 (9) 955-961;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Ropivacaine, a new amide-type local anesthetic agent, is metabolized by cytochromes P450 1A and 3A in human liver microsomes.

G Ekström and U B Gunnarsson
Drug Metabolism and Disposition September 1, 1996, 24 (9) 955-961;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics