Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Depletion of glutathione in the Kidney and the Renal Disposition of Administered Inorganic Mercury

Rudolfs K. Zalups and Lawrence H. Lash
Drug Metabolism and Disposition April 1997, 25 (4) 516-523;
Rudolfs K. Zalups
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lawrence H. Lash
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The primary aim of the present study was to evaluate the effects of different means of depleting glutathione (GSH) in the kidneys and liver on the renal and hepatic accumulation and disposition of a nontoxic dose of inorganic mercury. Renal and hepatic disposition of mercury were evaluated 1 hr after the intravenous administration of a 0.5 μmol/kg dose of mercuric chloride in control rats and rats pretreated with acivicin, buthionine sulfoximine (BSO), or diethylmaleate (DEM). Pretreatment with acivicin or DEM caused significant decreases in the net renal accumulation of mercury during the first hour after the injection of mercuric chloride. The primary effects of these two pretreatments occurred in the renal cortex, although pretreatment with DEM also caused significant decreases in the concentration of mercury in the outer stripe of the outer medulla. Despite the fact that pretreatment with BSO caused a reduction in the renal content of GSH, comparable with that caused by DEM, pretreatment with BSO had no significant effect on the renal disposition of mercury. Pretreatment with acivicin, BSO, or DEM also caused significant decreases in measurable reduced GSH, with BSO and DEM having the most pronounced effects. Injection of the nontoxic dose of mercuric chloride after pretreatment with acivicin resulted in slightly, but significantly, decreased hepatic content of mercury. Interestingly, pretreatment with BSO or DEM actually caused significant increases in the hepatic content of mercury 1 hr after the injection of mercuric chloride. We postulate that this effect was due to a diminished ability of hepatocytes to export mercuric conjugates of GSH out into either the bile or blood. The results of this study indicate that depletion of renal GSH by conjugation reactions between GSH and DEM leads to an acute reduction in the renal accumulation of inorganic mercury. However, the results also indicate that depletion of renal levels of GSH by inhibition of GSH synthesis does not affect acutely the ability of the kidneys to accumulate inorganic mercury. Thus, it seems that factors in addition to intracellular GSH status play an important role in the renal accumulation/retention of inorganic mercury.

Footnotes

  • Send reprint requests to: Dr. Rudolfs K. Zalups, Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College Street, Macon, GA 31207.

  • This study was supported in part by grants from the National Institutes of Health (ES05157 and DK40725).

  • Abbreviations used are::
    GSH
    glutathione
    BSO
    buthionine sulfoximine
    DEM
    diethylmaleate
    GSSG
    glutathione disulfide
    • Received November 26, 1996.
    • Accepted January 24, 1997.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 25, Issue 4
1 Apr 1997
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Depletion of glutathione in the Kidney and the Renal Disposition of Administered Inorganic Mercury
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Depletion of glutathione in the Kidney and the Renal Disposition of Administered Inorganic Mercury

Rudolfs K. Zalups and Lawrence H. Lash
Drug Metabolism and Disposition April 1, 1997, 25 (4) 516-523;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Depletion of glutathione in the Kidney and the Renal Disposition of Administered Inorganic Mercury

Rudolfs K. Zalups and Lawrence H. Lash
Drug Metabolism and Disposition April 1, 1997, 25 (4) 516-523;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Sex- and lifestyle-related factors affect hepatic CYP levels
  • Adipocyte PXR does not play an essential role in obesity.
  • CYP3A-mediated oxidation of DABE and BIBR0951
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics