Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Rapid CommunicationShort Communication

Blood-Brain Barrier Permeability to Morphine-6-Glucuronide is Markedly Reduced Compared with Morphine

Dafang Wu, Young-Sook Kang, Ulrich Bickel and William M. Pardridge
Drug Metabolism and Disposition June 1997, 25 (6) 768-771;
Dafang Wu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Young-Sook Kang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ulrich Bickel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William M. Pardridge
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The blood-brain barrier (BBB) permeability to morphine and morphine-6-glucuronide (M6G) is measured under identical conditions using an intravenous injection method in the rat and HPLC separation of morphine from its metabolites. The brain uptake of M6G expressed as %ID/g was 32-fold lower than that of morphine, and the BBB permeability surface area product (PS) of M6G was 57-fold lower as compared with that of morphine. Consistent with these in vivo data, the 1-octanol/buffer partition study showed the liposolubility of M6G was 187-fold lower than that of morphine. The CNS origin of M6G analgesia after peripheral administration was confirmed because the analgesia was completely blocked by naloxone, which crosses BBB, but not by naloxone methiodide, which does not enter brain from blood. In conclusion, the BBB permeability to M6G is markedly reduced as compared with morphine, consistent with the much lower lipid solubility of M6G relative to morphine.

Footnotes

  • Send reprint requests to: Dr. William M. Pardridge, Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90095-1682.

  • Received October 29, 1996; accepted February 12, 1997.

  • This study was supported in part by a grant from the National Institute on Drug Abuse (R01-DA-06748). U.B. is supported by the Deutsche Forschungsgemeinschaft (Bi 328/4-2), and Y.-S.K. is a research fellow of the Alexander von Humboldt Foundation, Germany.

  • Abbreviations used are::
    M6G
    morphine-6-β-d-glucuronide
    BBB
    blood-brain barrier
    AUC
    area under the plasma concentration-time curve
    M3G
    morphine-3-β-d-glucuronide
    CNS
    central nervous system
    ID
    injected dose
    PS
    permeability-surface area
    HSA
    human serum albumin
    RSA
    rat serum albumin
    P
    octanol/Ringer-HEPES buffer’s partition coefficient
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 25, Issue 6
1 Jun 1997
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Blood-Brain Barrier Permeability to Morphine-6-Glucuronide is Markedly Reduced Compared with Morphine
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Rapid CommunicationShort Communication

Blood-Brain Barrier Permeability to Morphine-6-Glucuronide is Markedly Reduced Compared with Morphine

Dafang Wu, Young-Sook Kang, Ulrich Bickel and William M. Pardridge
Drug Metabolism and Disposition June 1, 1997, 25 (6) 768-771;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Rapid CommunicationShort Communication

Blood-Brain Barrier Permeability to Morphine-6-Glucuronide is Markedly Reduced Compared with Morphine

Dafang Wu, Young-Sook Kang, Ulrich Bickel and William M. Pardridge
Drug Metabolism and Disposition June 1, 1997, 25 (6) 768-771;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Preincubation Effects on Inhibition of OCT1 by CsA
  • Carbamazepine Metabolite and Hypersensitivity Reactions
  • SULT4A1 Preserves Mitochondrial Function
Show more Short Communication

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics