Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Effects of Fibrates on the Glycine Conjugation of Benzoic Acid in Rats

Zoltán Gregus, Tibor Fekete, Éva Halászi, Ágnes Gyurasics and Curtis D. Klaassen
Drug Metabolism and Disposition November 1998, 26 (11) 1082-1088;
Zoltán Gregus
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tibor Fekete
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Éva Halászi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ágnes Gyurasics
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Curtis D. Klaassen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In the course of glycine conjugation, benzoic acid is successively converted into benzoyl-CoA and benzoylglycine by mitochondrial enzymes (i.e. benzoyl-CoA synthetase and benzoyl-CoA/glycine N-acyltransferase, respectively), utilizing ATP, CoA, and glycine. Large doses of benzoate deplete CoA from the liver, suggesting that the supply of CoA may limit the capacity for glycine conjugation. Because fibrates are known to increase hepatic CoA synthesis, we examined whether treatment with fenofibrate or bezafibrate enhanced the capacity of rats to conjugate benzoic acid with glycine. Dietary administration of fenofibrate or bezafibrate (2.5 mmol/kg of feed, for 10 days) increased hepatic CoA levels 8–10-fold, while not affecting hepatic ATP levels; only fenofibrate elevated, albeit moderately, the concentration of glycine in liver. Hepatic mitochondria isolated from fibrate-fed rats, compared with those from controls, exhibited unchanged benzoyl-CoA synthetase activity but higher benzoyl-CoA hydrolase and lower benzoyl-CoA/glycineN-acyltransferase activities. Feeding with either fibrate increased liver mass by 50–60%. Control and fibrate-fed rats were administered benzoate at different doses, one to produce a large demand for CoA (i.e. 2 mmol/kg, iv) and two others to produce smaller demands for CoA (i.e. 1 mmol/kg or 2 mmol/kg plus glycine, iv). Fenofibrate-fed rats, and to a lesser extent bezafibrate-fed animals, exhibited increased glycine conjugation capacity, as indicated by faster disappearance of benzoate from the blood and appearance of benzoylglycine in the blood and urine, compared with controls; however, fibrates were not more effective in rats receiving the benzoate dose that produced the greatest demand for CoA. In contrast, benzoylglycine formation from benzoate (0.1–1 mM) was not enhanced in liver slices from fibrate-fed rats; moreover, it was lower than control levels in slices from bezafibrate-fed animals. Bezafibrate, but not fenofibrate, given to rats in a single dose (0.5 mmol/kg, ip) decreased the elimination and glycine conjugation of benzoate, indicating that bezafibrate is a direct inhibitor of glycine conjugation. In summary, fibrates influence glycine conjugation in a complex manner. Some fibrate-induced alterations (i.e.increased benzoyl-CoA hydrolase and decreased glycine transferase activities and direct inhibition by bezafibrate) can potentially hinder conjugation of benzoate with glycine, thus precluding conclusions regarding whether increased CoA availability enhances glycine conjugation. Fibrate-induced hepatomegaly appears to significantly contribute to the increased glycine conjugation capacity of rats treated with fenofibrate or bezafibrate.

Footnotes

  • Send reprint requests to: Zoltán Gregus, M.D., Ph.D., D.Sc., Department of Pharmacology, University Medical School of Pécs, Szigeti út 12, H-7643 Pécs, Hungary. E-mail:gregus{at}apecs.pote.hu

  • This report is based on work sponsored by the Hungarian-United States Science and Technology Joint Fund, in cooperation with the Ministry of Social Welfare in Hungary and the United States Department of Health and Human Services. Financial support was also received from the Hungarian National Scientific Research Foundation (OTKA) and the United States Public Health Service (Grant ES03192).

  • Abbreviations used are::
    Vd
    volume of distribution
    CLb
    blood clearance
    Kel
    elimination rate constant
    • Received March 23, 1998.
    • Accepted June 9, 1998.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 26, Issue 11
1 Nov 1998
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Effects of Fibrates on the Glycine Conjugation of Benzoic Acid in Rats
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Effects of Fibrates on the Glycine Conjugation of Benzoic Acid in Rats

Zoltán Gregus, Tibor Fekete, Éva Halászi, Ágnes Gyurasics and Curtis D. Klaassen
Drug Metabolism and Disposition November 1, 1998, 26 (11) 1082-1088;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Effects of Fibrates on the Glycine Conjugation of Benzoic Acid in Rats

Zoltán Gregus, Tibor Fekete, Éva Halászi, Ágnes Gyurasics and Curtis D. Klaassen
Drug Metabolism and Disposition November 1, 1998, 26 (11) 1082-1088;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Functional Characterization of 29 CYP4F2 Variants
  • Exposure-toxicity relation of apatinib
  • ABC phenomenon potentiates anti-HCC efficacy
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics