Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Biotransformation of 13-cis- and 9-cis-Retinoic Acid to All-trans-Retinoic Acid in Rat Conceptal Homogenates

Evidence for Catalysis by a Conceptal Isomerase

Hao Chen and Mont R. Juchau
Drug Metabolism and Disposition March 1998, 26 (3) 222-228;
Hao Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mont R. Juchau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Evidence for Catalysis by a Conceptal Isomerase

Abstract

The purpose of this study was to investigate whether and to what extent the steric isomerization of retinoic acids in conceptal tissues can be attributed to enzymatic catalysis in addition to thiol-dependent, nonenzymatic catalysis. Conversions of 13-cis-retinoic acid and 9-cis-retinoic acid to all-trans-retinoic acid catalyzed by cell-free preparations of conceptal rat tissues (gestational day 12.5) were investigated. Substrates and rat conceptal homogenates (RCH) were incubated in sodium phosphate buffer (0.1 M, pH 7.5) at 37°C in the dark. Incubation mixtures were quantitatively analyzed by HPLC. In RCH-catalyzed reactions, conversions of 13-cis-retinoic acid or 9-cis-retinoic acid to all-trans-retinoic acid were very rapid, in comparison with uncatalyzed isomerization reactions (incubations without RCH). Comparisons of the rates of reactions catalyzed by freshly prepared vs. freshly prepared/dialyzed RCH showed no significant differences, indicating that small, suflhydryl-containing molecules such as reduced glutathione did not significantly contribute to the RCH-catalyzed reactions. Furthermore, at physiological concentrations (2.5–10 mM), reduced glutathione exhibited very low specific catalytic activities, indicating that nonenzymatic, sulfhydryl-dependent catalysis was not a major mechanism in catalyzing interconversions of retinoic acids in vivo. Enzymatic catalysis by RCH of the conversion of 13-cis-retinoic acid to all-trans-retinoic acid was further characterized by showing 1) substrate saturation kinetics, 2) reaction rates that increased proportionally with protein concentrations, and (3) much greater sensitivity of the reactions to heat inactivation and denaturation by urea, compared with nonenzymatic, glutathione-catalyzed reactions. Thus, isomerization of retinoids in conceptal tissues appeared to be under enzymatic control.

Footnotes

  • Send reprint requests to: M. R. Juchau, Ph.D., Department of Pharmacology, School of Medicine, Box 357280, University of Washington, Seattle, WA 98195.

  • This work was supported by National Institute of Environmental Health Sciences grants ES04041 and ES05861.

  • Abbreviations used are::
    RAR
    retinoic acid receptor
    13-cRA
    13-cis-retinoic acid
    9-cRA
    9-cis-retinoic acid
    t-RA
    all-trans-retinoic acid
    RCH
    rat conceptal homogenate(s)
    GSH
    reduced glutathione
    ANOVA
    analysis of variance
    • Received June 13, 1997.
    • Accepted November 13, 1997.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 26, Issue 3
1 Mar 1998
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Biotransformation of 13-cis- and 9-cis-Retinoic Acid to All-trans-Retinoic Acid in Rat Conceptal Homogenates
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Biotransformation of 13-cis- and 9-cis-Retinoic Acid to All-trans-Retinoic Acid in Rat Conceptal Homogenates

Hao Chen and Mont R. Juchau
Drug Metabolism and Disposition March 1, 1998, 26 (3) 222-228;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Biotransformation of 13-cis- and 9-cis-Retinoic Acid to All-trans-Retinoic Acid in Rat Conceptal Homogenates

Hao Chen and Mont R. Juchau
Drug Metabolism and Disposition March 1, 1998, 26 (3) 222-228;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Determination of Acyl-, O-, and N-Glucuronide
  • TMDD Affects PK of IL-10 Fc-fusion Proteins
  • Uptake as the RDS in Pevonedistat Hepatic Clearance
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics