Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Effects of Retinoid Treatment of Rats on Hepatic Microsomal Metabolism and Cytochromes P450

Correlation Between Retinoic Acid Receptor/Retinoid X Receptor Selectivity and Effects on Metabolic Enzymes

Stanley R. Howell, Michael A. Shirley and Edgar H. Ulm
Drug Metabolism and Disposition March 1998, 26 (3) 234-239;
Stanley R. Howell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael A. Shirley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Edgar H. Ulm
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Correlation Between Retinoic Acid Receptor/Retinoid X Receptor Selectivity and Effects on Metabolic Enzymes

Abstract

Retinoids are compounds that bind to and activate one or more retinoid receptors to elicit various physiological responses. There are two families of retinoid receptors, i.e. retinoic acid receptors (RAR) and retinoid X receptors (RXR), for which the various synthetic and naturally occurring retinoids have differing selectivities. The synthetic analogs LG100268 and LGD1069 (Targretin) are RXR-selective, whereas ALRT1550 is highly RAR-selective. Naturally occurring all-trans-retinoic acid (Tretinoin) has a degree of selectivity for RAR, whereas ALRT1057 (9-cis-retinoic acid, Panretin) is equally active at RAR and RXR (i.e. a pan-agonist). To evaluate the effects of these compounds on metabolic enzymes, male Sprague-Dawley rats received daily oral doses for 4 days, and liver microsomes were prepared on day 5. As a class, these ligands exerted profound effects on hepatic microsomal metabolic enzyme levels. Those with RAR activity decreased hepatic cytochrome P450 (CYP or P450) levels and in vitro metabolism of the compound of pretreatment, whereas those exerting predominantly RXR activity increased these parameters. A similar relationship was observed when glucuronidation was examined. Hepatic CYP2B1/2 was unaffected and CYP3A was decreased by RAR-selective ALRT1550, whereas both were induced by ligands selective for RXR. However, both RAR- and RXR-selective ligands decreased CYP1A2, whereas they induced CYP4A. Although the mechanisms underlying these effects are not known, these results suggest that RAR- and RXR-binding ligands exert distinct effects on hepatic metabolism, and they indicate the potential for drug-drug interactions, especially involving CYP3A. The nature of such interactions would depend on the RAR/RXR selectivity of the ligand and the P450 isozymes responsible for the metabolism of coadministered drugs.

Footnotes

  • Send reprint requests to: Stanley R. Howell, Department of Drug Safety and Disposition, Ligand Pharmaceuticals, Inc., 10255 Science Center Drive, San Diego, CA 92121.

  • Abbreviations used are::
    RAR
    retinoic acid receptor(s)
    RXR
    retinoid X receptor(s)
    GT
    glucuronyltransferase
    ATRA
    all-trans-retinoic acid
    BSA
    bovine serum albumin
    CMC
    carboxymethylcellulose
    CYP or P450
    cytochrome P450
    PPAR
    peroxisome proliferator-activated receptor(s)
    PEG
    polyethylene glycol
    • Received June 30, 1997.
    • Accepted November 21, 1997.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 26, Issue 3
1 Mar 1998
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Effects of Retinoid Treatment of Rats on Hepatic Microsomal Metabolism and Cytochromes P450
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Effects of Retinoid Treatment of Rats on Hepatic Microsomal Metabolism and Cytochromes P450

Stanley R. Howell, Michael A. Shirley and Edgar H. Ulm
Drug Metabolism and Disposition March 1, 1998, 26 (3) 234-239;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Effects of Retinoid Treatment of Rats on Hepatic Microsomal Metabolism and Cytochromes P450

Stanley R. Howell, Michael A. Shirley and Edgar H. Ulm
Drug Metabolism and Disposition March 1, 1998, 26 (3) 234-239;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Endogenous substrates of rat organic cation transporters
  • Catabolism and Metabolism of ABBV-011, a Calicheamicin ADC
  • Gadoxetate-enhanced MRI and FXR in benign tumours
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics