Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

In Vitro and In Vivo Evaluations of Intestinal Barriers for the Zwitterion L-767,679 and Its Carboxyl Ester Prodrug L-775,318

Roles of Efflux and Metabolism

Thomayant Prueksaritanont, Polly DeLuna, Lynn M. Gorham, Bennett Ma, Dosinda Cohn, Jianmei Pang, Xin Xu, Kwan Leung and Jiunn H. Lin
Drug Metabolism and Disposition June 1998, 26 (6) 520-527;
Thomayant Prueksaritanont
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Polly DeLuna
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lynn M. Gorham
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bennett Ma
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dosinda Cohn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jianmei Pang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xin Xu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kwan Leung
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jiunn H. Lin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Roles of Efflux and Metabolism

Abstract

The barriers to oral delivery of the hydrophilic zwitterion L-767,679 (I) and its carboxyl ester prodrug L-775,318 (II) were examined. In the Caco-2 cell model, transport of II, but not I, was strongly oriented in the secretory direction. The basal-to-apical transport of II displayed saturable kinetics and was markedly inhibited by verapamil and quinidine, known P-glycoprotein inhibitors. In Caco-2 cells, metabolism of I was not observed, whereas hydrolysis of II was modest (≤20%). In the in situ rat intestinal loop model, verapamil did not affect the absorption of I but significantly increased the absorption of II. I was resistant to intestinal metabolism, whereas II underwent hydrolysis partially in rat lumen but more extensively in rat intestinal tissue and blood. In vitro metabolism studies indicated that verapamil also inhibited the hydrolysis of II in rats. The inhibition was relatively specific for the intestinal and not the luminal esterases. These results suggested that the intestinal absorption of I was limited not by intestinal efflux or metabolism but more likely by the low lipophilicity of I. However, an efflux system, likely mediated by P-glycoprotein, played an important role in limiting the absorption of II. In rats, metabolism served as an additional barrier to the absorption of II. Verapamil increased the intestinal absorption of the prodrug by inhibiting the efflux system in the two models studied, as well as possibly inhibiting metabolism in rats. For the first time, secretory transport was identified as a cause of the failure to increase the absorption of a lipophilic and cationic prodrug developed to overcome the absorption problem.

Footnotes

  • Send reprint requests to: Thomayant Prueksaritanont, Ph.D., Merck Research Laboratories, WP 75–100, Sumneytown Pike, West Point, PA 19486.

  • Abbreviation used is::
    PMSF
    phenylmethylsulfonyl fluoride
    • Received October 16, 1997.
    • Accepted February 4, 1998.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition
Vol. 26, Issue 6
1 Jun 1998
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
In Vitro and In Vivo Evaluations of Intestinal Barriers for the Zwitterion L-767,679 and Its Carboxyl Ester Prodrug L-775,318
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

In Vitro and In Vivo Evaluations of Intestinal Barriers for the Zwitterion L-767,679 and Its Carboxyl Ester Prodrug L-775,318

Thomayant Prueksaritanont, Polly DeLuna, Lynn M. Gorham, Bennett Ma, Dosinda Cohn, Jianmei Pang, Xin Xu, Kwan Leung and Jiunn H. Lin
Drug Metabolism and Disposition June 1, 1998, 26 (6) 520-527;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

In Vitro and In Vivo Evaluations of Intestinal Barriers for the Zwitterion L-767,679 and Its Carboxyl Ester Prodrug L-775,318

Thomayant Prueksaritanont, Polly DeLuna, Lynn M. Gorham, Bennett Ma, Dosinda Cohn, Jianmei Pang, Xin Xu, Kwan Leung and Jiunn H. Lin
Drug Metabolism and Disposition June 1, 1998, 26 (6) 520-527;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Identification of payload-containing catabolites of ADCs
  • PK Interactions of Licorice with Cytochrome P450s
  • Biotransformation of Trastuzumab and Pertuzumab
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics