Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Inhibition of Human Aldehyde Dehydrogenase 1 by the 4-Hydroxycyclophosphamide Degradation Product Acrolein

Song Ren, Thomas F. Kalhorn and John T. Slattery
Drug Metabolism and Disposition January 1999, 27 (1) 133-137;
Song Ren
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas F. Kalhorn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John T. Slattery
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In a previous study, we observed that the elimination clearance of 4-hydroxycyclophosphamide (HCY) in patients receiving cyclophosphamide (CY) 60 mg/kg/day by 1-h i.v. infusion for 2 consecutive days decreased from day 1 to day 2 due to an apparent decrease in human aldehyde dehydrogenase 1 (ALDH1) activity. Here, the mechanism for the decrease in ALDH1 activity after CY administration was investigated. In human liver cytosol incubations, HCY inhibited ALDH activity mainly through its degradation product acrolein, whereas carboxyethylphosphoramide mustard inhibited ALDH activity only at supraclinical concentrations. Other CY metabolites evaluated, phosphoramide mustard and chloroacetaldehyde, did not inhibit ALDH. The inhibition of ALDH1 activity by acrolein in incubations with human erythrocyte ALDH1 was competitive with a Ki of 0.646 μM. The inhibition was independent of preincubation time and reversible by dialysis. The percentage of inhibition of ALDH1 activity in vivo by acrolein in patients receiving CY was calculated based on the in vitroKi of acrolein, the in vitroKm of HCY, and the in vivo peak blood concentrations of HCY and acrolein. The calculations indicated that the activity of ALDH1 was inhibited by 85, 88, and 91% on days 1, 2, and 3 (24 h after the dose on day 2) of CY administration, respectively. The increase in ALDH1 inhibition with time is consistent with the decrease in HCY elimination clearance and the increase in HCY area under the plasma concentration time curve with time.

Footnotes

  • Send reprint requests to: Dr. John T. Slattery, Fred Hutchinson Cancer Research Center, Thomas Building, D2-100, 1100 Fairview Avenue North, P.O. Box 19024, Seattle, WA 98109. E-mail:jts{at}u.washington.edu

  • This work was supported in part by National Institutes of Health Grants CA 18029 and GM 32165.

  • Abbreviations used are::
    CY
    cyclophosphamide
    HCY
    4-hydroxycyclophosphamide
    pI
    isoelectric point
    CEPM
    carboxyethylphosphoramide mustard
    PM
    phosphoramide mustard
    IAL
    indole-3-acetaldehyde
    IAA
    indole-3-acetic acid
    ALDH
    aldehyde dehydrogenase
    • Received May 14, 1998.
    • Accepted August 31, 1998.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 27 (1)
Drug Metabolism and Disposition
Vol. 27, Issue 1
1 Jan 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Inhibition of Human Aldehyde Dehydrogenase 1 by the 4-Hydroxycyclophosphamide Degradation Product Acrolein
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Inhibition of Human Aldehyde Dehydrogenase 1 by the 4-Hydroxycyclophosphamide Degradation Product Acrolein

Song Ren, Thomas F. Kalhorn and John T. Slattery
Drug Metabolism and Disposition January 1, 1999, 27 (1) 133-137;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Inhibition of Human Aldehyde Dehydrogenase 1 by the 4-Hydroxycyclophosphamide Degradation Product Acrolein

Song Ren, Thomas F. Kalhorn and John T. Slattery
Drug Metabolism and Disposition January 1, 1999, 27 (1) 133-137;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Candesartan glucuronide serves as a CYP2C8 inhibitor
  • Role of AADAC on eslicarbazepine acetate hydrolysis
  • Gene expression profile of human intestinal epithelial cells
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics