Abstract
The results of this study show the quinone-dependent reduction of tertiary amine N-oxides to the corresponding tertiary amines by rat liver preparations. The reduction of imipramineN-oxide to imipramine mediated by liver mitochondria, microsomes, and cytosol proceeded in the presence of both NAD(P)H and menadione under anaerobic conditions. When menadione was replaced with 1,4-naphthoquinone or 9,10-anthraquinone, similar results were obtained in the cytosolic reduction. The quinone-dependent reducing activity in liver cytosol was inhibited by dicumarol and carbon monoxide. This result suggested that the activity is caused by DT-diaphorase, a cytosolic quinone reductase, and hemoproteins in liver cytosol. In fact, catalase and hemoglobin showed the ability to reduce imipramineN-oxide when supplemented with DT-diaphorase. The hemoproteins also exhibited the N-oxide reductase activity with reduced menadione, menadiol. The N-oxide reductase activity of the hemoproteins was also exhibited with 1,4-dihydroxynaphthalene, 1,4,9,10-tetrahydroxyanthracene, or 1,4-dihydroxy-9,10-anthraquinone. Furthermore, hematin revealed a significant N-oxide-reducing activity in the presence of menadiol. The reduction appears to proceed in two steps. The first step is reduction of menadione to menadiol by a quinone reductase with NADPH or NADH. The second step is nonenzymatic reduction of tertiary amineN-oxides to tertiary amines by menadiol, catalyzed by the heme group of hemoproteins. Cyclobenzaprine N-oxide and brucine N-oxide were also transformed similarly to the corresponding amine by the quinone-dependent reducing system.
Footnotes
-
Send reprint requests to: Dr. Shigeyuki Kitamura, Institute of Pharmaceutical Science, Hiroshima University, School of Medicine, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan.
-
↵1 The abbreviation used is: HPLC, high-performance liquid chromatography.
- Received May 22, 1998.
- Accepted July 31, 1998.
- The American Society for Pharmacology and Experimental Therapeutics
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|