Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Biotransformation of Doxepin by Cunninghamella elegans

Joanna D. Moody, James P. Freeman and Carl E. Cerniglia
Drug Metabolism and Disposition October 1999, 27 (10) 1157-1164;
Joanna D. Moody
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James P. Freeman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carl E. Cerniglia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A filamentous fungus, Cunninghamella elegans ATCC 9245, was used as a microbial model of mammalian metabolism to biotransform doxepin, a tricyclic antidepressant drug. Doxepin is produced as an 85:15% mixture of the trans- (E) and cis- (Z) forms. After 96 h of incubation in Sabouraud dextrose broth, 28% of the drug was metabolized to 16 metabolites. No change in thetrans- (E) and cis- (Z) ratio of doxepin was observed. Metabolites were isolated by reversed phase HPLC and identified by 1H NMR and mass spectroscopic analysis. The major metabolites were (E)-2-hydroxydoxepin, (E)-3-hydroxydoxepin, (Z)-8-hydroxydoxepin, (E)-2-hydroxy-N-desmethyldoxepin, (E)-3-hydroxy-N-desmethyldoxepin, (E)-4-hydroxy-N-desmethyldoxepin, (Z)- and (E)-8-hydroxy-N-desmethyldoxepin, (E)-N-acetyl-N-desmethyldoxepin, (E)-N-desmethyl-N-formyldoxepin, (E)-N-acetyldidesmethyldoxepin, (E)-and (Z)-doxepin-N-oxide, and (E)- and (Z)-N-desmethyldoxepin. Six of the metabolites produced by C. elegans were essentially similar to those obtained in human metabolism studies, although nine novel metabolites were identified.

Footnotes

  • Send reprint requests to: Dr. Carl E. Cerniglia, Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079-7341. E-mail:CCerniglia{at}nctr.fda.gov

  • Abbreviations used are::
    NOE
    nuclear Overhauser effect
    DEP
    direct exposure probe
    EI
    electron ionization
    PICI
    positive ion chemical ionization
    • Received March 3, 1999.
    • Accepted June 10, 1999.
  • U.S. Government
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 27 (10)
Drug Metabolism and Disposition
Vol. 27, Issue 10
1 Oct 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Biotransformation of Doxepin by Cunninghamella elegans
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Biotransformation of Doxepin by Cunninghamella elegans

Joanna D. Moody, James P. Freeman and Carl E. Cerniglia
Drug Metabolism and Disposition October 1, 1999, 27 (10) 1157-1164;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Biotransformation of Doxepin by Cunninghamella elegans

Joanna D. Moody, James P. Freeman and Carl E. Cerniglia
Drug Metabolism and Disposition October 1, 1999, 27 (10) 1157-1164;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Human ADME properties of abrocitinib
  • Impact of physiological microenvironments on HepaRG cells
  • New Dog, Cat, and Pig P450 2J Enzymes
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics