Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Studies on the Substrate Specificity of Human Intestinal UDP-Glucuronosyltransferases 1A8 and 1A10

Ziqiang Cheng, Anna Radominska-Pandya and Thomas R. Tephly
Drug Metabolism and Disposition October 1999, 27 (10) 1165-1170;
Ziqiang Cheng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anna Radominska-Pandya
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas R. Tephly
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Although the liver has been considered the most important organ involved in glucuronidation, recent studies have focused on the role of the gastrointestinal tract in the glucuronidation of xenobiotics and endobiotics. Two UDP-glucuronosyltransferase (UGT) isoforms of human intestinal mucosa, which are absent in liver, have been identified by reverse transcriptase-polymerase chain reaction. mRNAs of UGT1A8 and UGT1A10 were detected in both the small intestine and the colon. The corresponding cDNAs for UGT1A8 and UGT1A10 were cloned from ileal RNA and inserted into the mammalian expression vector pcDNA3. Transfection of the cDNAs into human embryonic kidney 293 cells was carried out and stable expression was achieved. Membrane preparations from human embryonic kidney 293 cells expressing either UGT1A8 or UGT1A10 were isolated and the expression of each isoform was analyzed by Western blot. The catalytic activity of stably expressed UGT1A8 toward catechol estrogens, coumarins, flavonoids, anthraquinones, and phenolic compounds was much higher than that of UGT1A10. UGT1A8, but not UGT1A10, catalyzed the glucuronidation of opioids, bile acids, fatty acids, retinoids, and clinically useful drugs, such as ciprofibrate, furosemide, and diflunisal. These studies suggest that human intestinal UGTs may play an important role in the detoxification of xenobiotic compounds and, in some cases, limit the bioavailability of therapeutic agents.

Footnotes

  • Send reprint requests to: Dr. Thomas R. Tephly, 2–9452 Bowen Science Building, Department of Pharmacology, The University of Iowa, Iowa City, IA 52242. E-mail: Thomas-Tephly{at}uiowa.edu

  • This work was supported by National Institutes of Health Grants GM26221 (T.R.T.) and DK49715 and 51971 (A.R.-P.) and a grant from the Monsanto Company (T.R.T).

  • Abbreviations used are::
    UGT
    UDP-glucuronosyltransferase
    HK293
    human embryonic kidney 293
    RT-PCR
    reverse transcriptase-polymerase chain reaction
    NSAIDs
    nonsteroidal anti-inflammatory drugs
    RA
    retinoic acid
    • Received December 31, 1998.
    • Accepted June 15, 1999.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 27 (10)
Drug Metabolism and Disposition
Vol. 27, Issue 10
1 Oct 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Studies on the Substrate Specificity of Human Intestinal UDP-Glucuronosyltransferases 1A8 and 1A10
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Studies on the Substrate Specificity of Human Intestinal UDP-Glucuronosyltransferases 1A8 and 1A10

Ziqiang Cheng, Anna Radominska-Pandya and Thomas R. Tephly
Drug Metabolism and Disposition October 1, 1999, 27 (10) 1165-1170;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Studies on the Substrate Specificity of Human Intestinal UDP-Glucuronosyltransferases 1A8 and 1A10

Ziqiang Cheng, Anna Radominska-Pandya and Thomas R. Tephly
Drug Metabolism and Disposition October 1, 1999, 27 (10) 1165-1170;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Ontogeny of CPPGL
  • Expression of AKR and SDR Isoforms in the Human Intestine
  • Is Protein-Mediated Uptake Effect a Real Phenomenon?
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics