Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Detection of Quantitative Trait Loci Affecting Caffeine Metabolism by Interval Mapping in a Genome-Wide Scan of C3H/HeJ × APN F2 Mice

William L. Casley, J. Allan Menzies, Larry W. Whitehouse and Thomas W. Moon
Drug Metabolism and Disposition December 1999, 27 (12) 1375-1380;
William L. Casley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Allan Menzies
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Larry W. Whitehouse
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas W. Moon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Caffeine metabolite ratios have been widely used to measure cytochrome P-450 1A2 activity in humans. Serum paraxanthine/caffeine ratio is one such index of this activity. We had previously demonstrated genetic variation of this trait among inbred mouse strains. In the present study, we have undertaken a genome-wide scan for quantitative trait loci affecting this trait with an interval mapping approach on an F2 intercross population of acetaminophen nonsusceptible and C3H/HeJ inbred mice. A statistically significant association (log-likelihood ratio = 25.0) between a locus on chromosome 9, which colocalized with the murineCyp1a2 locus, and the plasma paraxanthine/caffeine ratio was identified. This result suggested the presence of an expression polymorphism affecting this gene. A second locus was identified on chromosome 1 (log-likelihood ratio = 9.7) for which no obvious candidate gene has been identified. The influence of this locus on the paraxanthine/caffeine index was more significant among males (log-likelihood ratio = 6.3) than females (log-likelihood ratio = 3.6). A third locus was identified on chromosome 4 with a less statistically robust association (log-likelihood ratio = 3.4) to the paraxanthine/caffeine phenotype. Collectively, these three loci accounted for 63.2% of the variation observed in the F2population for this phenotype. These results demonstrate the potential for genetic variation arising from factors other than CYP1A2 activity to influence the plasma paraxanthine/caffeine ratio in mice. This study demonstrates the utility of quantitative genetics in the analysis of polygenic drug metabolism.

Footnotes

  • Send reprint requests to: William L. Casley, Banting Research Centre, Tunney's Pasture 2201C, Ottawa, Ontario, Canada K1A 0L2. E-mail: Bill-Casley{at}hc-sc.gc.ca

  • Presented, in part, at the 12th International Mouse Genome Conference, Garmisch-Partenkirchen, Germany, October, 1998.

  • Abbreviations used are::
    CYP
    cytochrome P-450
    AHR
    aryl hydrocarbon receptor
    APN
    acetaminophen nonsusceptible
    QTL
    quantitative trait locus
    STR
    short tandem repeat
    LOD
    log-likelihood
    cM
    centiMorgan
    • Received July 1, 1999.
    • Accepted September 13, 1999.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 27 (12)
Drug Metabolism and Disposition
Vol. 27, Issue 12
1 Dec 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Detection of Quantitative Trait Loci Affecting Caffeine Metabolism by Interval Mapping in a Genome-Wide Scan of C3H/HeJ × APN F2 Mice
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Detection of Quantitative Trait Loci Affecting Caffeine Metabolism by Interval Mapping in a Genome-Wide Scan of C3H/HeJ × APN F2 Mice

William L. Casley, J. Allan Menzies, Larry W. Whitehouse and Thomas W. Moon
Drug Metabolism and Disposition December 1, 1999, 27 (12) 1375-1380;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Detection of Quantitative Trait Loci Affecting Caffeine Metabolism by Interval Mapping in a Genome-Wide Scan of C3H/HeJ × APN F2 Mice

William L. Casley, J. Allan Menzies, Larry W. Whitehouse and Thomas W. Moon
Drug Metabolism and Disposition December 1, 1999, 27 (12) 1375-1380;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Warfarin PBPK Model with TMDD Mechanism
  • Identification of payload-containing catabolites of ADCs
  • PK Interactions of Licorice with Cytochrome P450s
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics