Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Rapid CommunicationShort Communication

In Vivo Disposition of 3-Nitro-l-Tyrosine in Rats: Implications on Tracking Systemic Peroxynitrite Exposure

Mohammad A. Tabrizi-Fard, Tristan S. Maurer and Ho-Leung Fung
Drug Metabolism and Disposition April 1999, 27 (4) 429-431;
Mohammad A. Tabrizi-Fard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tristan S. Maurer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ho-Leung Fung
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In many pathological conditions such as inflammatory and neurodegenerative diseases, the in vivo toxicity of nitric oxide has been attributed to the toxic oxidant peroxynitrite. Interaction of peroxynitrite with biological molecules can modify tyrosine residues on the proteins at the ortho position resulting in the formation of the stable end-product, 3-nitro-l-tyrosine (3-NT). Recent investigations indicate that changes in the circulating concentrations of 3-NT in pathological conditions may reflect the extent of nitric oxide-dependent oxidative damage and peroxynitrite toxicity. In the present study, we examined the in vivo disposition characteristics of 3-NT in rats after either a single i.v. bolus dose (10 mg/kg) or a loading and maintenance infusion at 10 or 30 mg/kg. Plasma concentrations of 3-NT were analyzed by a reversed-phase HPLC method. After a single bolus dose of 3-NT at 10 mg/kg, the average half-life of the elimination phase for the drug was 68.5 ± 18.4 min (n = 5). Infusions of 3-NT at two different doses (10 and 30 mg/kg) indicated that the pharmacokinetic properties of 3-NT below plasma concentrations of 100 μM were both linear and stationary. Urinary excretion of unchanged 3-NT was minimal, but two distinct metabolites of 3-NT were identified in the urine collected throughout the study. These findings may be useful in the interpretation of the plasma and urine 3-NT concentrations as possible indices of systemic peroxynitrite exposure.

Footnotes

  • Send reprint requests to: Dr. Ho-Leung Fung, Ph.D., Department of Pharmaceutics, School of Pharmacy, State University of New York at Buffalo, 517 Hochstetter Hall, Box 601200, Buffalo, NY 14260-1200. E-mail: HLFung{at}acsu.buffalo.edu

  • This work was supported in part by Grant HL22273 from the National Institutes of Health.

  • Abbreviations used are::
    3-NT
    3-nitro-l-tyrosine
    NHPA
    3-nitro-4-hydroxyphenylacetic acid
    NHPL
    3-nitro-4-hydroxyphenyllactic acid
    TNM
    tetranitromethane
    AUC
    area under the plasma concentration-time curve
    MRT
    mean residence time
    • Received August 20, 1998.
    • Accepted January 5, 1999.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 27 (4)
Drug Metabolism and Disposition
Vol. 27, Issue 4
1 Apr 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
In Vivo Disposition of 3-Nitro-l-Tyrosine in Rats: Implications on Tracking Systemic Peroxynitrite Exposure
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Rapid CommunicationShort Communication

In Vivo Disposition of 3-Nitro-l-Tyrosine in Rats: Implications on Tracking Systemic Peroxynitrite Exposure

Mohammad A. Tabrizi-Fard, Tristan S. Maurer and Ho-Leung Fung
Drug Metabolism and Disposition April 1, 1999, 27 (4) 429-431;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Rapid CommunicationShort Communication

In Vivo Disposition of 3-Nitro-l-Tyrosine in Rats: Implications on Tracking Systemic Peroxynitrite Exposure

Mohammad A. Tabrizi-Fard, Tristan S. Maurer and Ho-Leung Fung
Drug Metabolism and Disposition April 1, 1999, 27 (4) 429-431;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Preincubation Effects on Inhibition of OCT1 by CsA
  • Carbamazepine Metabolite and Hypersensitivity Reactions
  • SULT4A1 Preserves Mitochondrial Function
Show more Short Communication

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics